"""Example of running a custom hand-coded policy alongside trainable policies. This example has two policies: (1) a simple PG policy (2) a hand-coded policy that acts at random in the env (doesn't learn) In the console output, you can see the PG policy does much better than random: Result for PG_multi_cartpole_0: ... policy_reward_mean: pg_policy: 185.23 random: 21.255 ... """ import argparse import os import ray from ray import tune from ray.tune.registry import register_env from ray.rllib.examples.env.multi_agent import MultiAgentCartPole from ray.rllib.examples.policy.random_policy import RandomPolicy from ray.rllib.policy.policy import PolicySpec from ray.rllib.utils.test_utils import check_learning_achieved parser = argparse.ArgumentParser() parser.add_argument( "--framework", choices=["tf", "tf2", "tfe", "torch"], default="tf", help="The DL framework specifier.", ) parser.add_argument( "--as-test", action="store_true", help="Whether this script should be run as a test: --stop-reward must " "be achieved within --stop-timesteps AND --stop-iters.", ) parser.add_argument( "--stop-iters", type=int, default=20, help="Number of iterations to train." ) parser.add_argument( "--stop-timesteps", type=int, default=100000, help="Number of timesteps to train." ) parser.add_argument( "--stop-reward", type=float, default=150.0, help="Reward at which we stop training." ) if __name__ == "__main__": args = parser.parse_args() ray.init() # Simple environment with 4 independent cartpole entities register_env( "multi_agent_cartpole", lambda _: MultiAgentCartPole({"num_agents": 4}) ) stop = { "training_iteration": args.stop_iters, "episode_reward_mean": args.stop_reward, "timesteps_total": args.stop_timesteps, } config = { "env": "multi_agent_cartpole", "multiagent": { # The multiagent Policy map. "policies": { # The Policy we are actually learning. "pg_policy": PolicySpec(config={"framework": args.framework}), # Random policy we are playing against. "random": PolicySpec(policy_class=RandomPolicy), }, # Map to either random behavior or PR learning behavior based on # the agent's ID. "policy_mapping_fn": ( lambda aid, **kwargs: ["pg_policy", "random"][aid % 2] ), # We wouldn't have to specify this here as the RandomPolicy does # not learn anyways (it has an empty `learn_on_batch` method), but # it's good practice to define this list here either way. "policies_to_train": ["pg_policy"], }, "framework": args.framework, # Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0. "num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")), } results = tune.run("PG", config=config, stop=stop, verbose=1) if args.as_test: check_learning_achieved(results, args.stop_reward) ray.shutdown()