""" Example of a curriculum learning setup using the `TaskSettableEnv` API and the env_task_fn config. This example shows: - Writing your own curriculum-capable environment using gym.Env. - Defining a env_task_fn that determines, whether and which new task the env(s) should be set to (using the TaskSettableEnv API). - Using Tune and RLlib to curriculum-learn this env. You can visualize experiment results in ~/ray_results using TensorBoard. """ import argparse import numpy as np import os import ray from ray import tune from ray.rllib.env.apis.task_settable_env import TaskSettableEnv, TaskType from ray.rllib.env.env_context import EnvContext from ray.rllib.examples.env.curriculum_capable_env import CurriculumCapableEnv from ray.rllib.utils.framework import try_import_tf, try_import_torch from ray.rllib.utils.test_utils import check_learning_achieved tf1, tf, tfv = try_import_tf() torch, nn = try_import_torch() parser = argparse.ArgumentParser() parser.add_argument( "--run", type=str, default="PPO", help="The RLlib-registered algorithm to use." ) parser.add_argument( "--framework", choices=["tf", "tf2", "tfe", "torch"], default="tf", help="The DL framework specifier.", ) parser.add_argument( "--as-test", action="store_true", help="Whether this script should be run as a test: --stop-reward must " "be achieved within --stop-timesteps AND --stop-iters.", ) parser.add_argument( "--stop-iters", type=int, default=50, help="Number of iterations to train." ) parser.add_argument( "--stop-timesteps", type=int, default=200000, help="Number of timesteps to train." ) parser.add_argument( "--stop-reward", type=float, default=10000.0, help="Reward at which we stop training.", ) parser.add_argument( "--local-mode", action="store_true", help="Init Ray in local mode for easier debugging.", ) def curriculum_fn( train_results: dict, task_settable_env: TaskSettableEnv, env_ctx: EnvContext ) -> TaskType: """Function returning a possibly new task to set `task_settable_env` to. Args: train_results: The train results returned by Algorithm.train(). task_settable_env: A single TaskSettableEnv object used inside any worker and at any vector position. Use `env_ctx` to get the worker_index, vector_index, and num_workers. env_ctx: The env context object (i.e. env's config dict plus properties worker_index, vector_index and num_workers) used to setup the `task_settable_env`. Returns: TaskType: The task to set the env to. This may be the same as the current one. """ # Our env supports tasks 1 (default) to 5. # With each task, rewards get scaled up by a factor of 10, such that: # Level 1: Expect rewards between 0.0 and 1.0. # Level 2: Expect rewards between 1.0 and 10.0, etc.. # We will thus raise the level/task each time we hit a new power of 10.0 new_task = int(np.log10(train_results["episode_reward_mean"]) + 2.1) # Clamp between valid values, just in case: new_task = max(min(new_task, 5), 1) print( f"Worker #{env_ctx.worker_index} vec-idx={env_ctx.vector_index}" f"\nR={train_results['episode_reward_mean']}" f"\nSetting env to task={new_task}" ) return new_task if __name__ == "__main__": args = parser.parse_args() ray.init(local_mode=args.local_mode) # Can also register the env creator function explicitly with: # register_env( # "curriculum_env", lambda config: CurriculumCapableEnv(config)) config = { "env": CurriculumCapableEnv, # or "curriculum_env" if registered above "env_config": { "start_level": 1, }, "num_workers": 2, # parallelism "num_envs_per_worker": 5, "env_task_fn": curriculum_fn, # Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0. "num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")), "framework": args.framework, } stop = { "training_iteration": args.stop_iters, "timesteps_total": args.stop_timesteps, "episode_reward_mean": args.stop_reward, } results = tune.run(args.run, config=config, stop=stop, verbose=2) if args.as_test: check_learning_achieved(results, args.stop_reward) ray.shutdown()