# Code in this file is copied and adapted from # https://github.com/openai/evolution-strategies-starter and from # https://github.com/modestyachts/ARS from collections import namedtuple import logging import numpy as np import time import ray from ray.rllib.agents import Trainer, with_common_config from ray.rllib.agents.ars.ars_tf_policy import ARSTFPolicy from ray.rllib.agents.es import optimizers, utils from ray.rllib.agents.es.es import validate_config from ray.rllib.agents.es.es_tf_policy import rollout from ray.rllib.env.env_context import EnvContext from ray.rllib.policy.sample_batch import DEFAULT_POLICY_ID from ray.rllib.utils.annotations import override from ray.rllib.utils import FilterManager logger = logging.getLogger(__name__) Result = namedtuple("Result", [ "noise_indices", "noisy_returns", "sign_noisy_returns", "noisy_lengths", "eval_returns", "eval_lengths" ]) # yapf: disable # __sphinx_doc_begin__ DEFAULT_CONFIG = with_common_config({ "action_noise_std": 0.0, "noise_stdev": 0.02, # std deviation of parameter noise "num_rollouts": 32, # number of perturbs to try "rollouts_used": 32, # number of perturbs to keep in gradient estimate "num_workers": 2, "sgd_stepsize": 0.01, # sgd step-size "observation_filter": "MeanStdFilter", "noise_size": 250000000, "eval_prob": 0.03, # probability of evaluating the parameter rewards "report_length": 10, # how many of the last rewards we average over "offset": 0, }) # __sphinx_doc_end__ # yapf: enable @ray.remote def create_shared_noise(count): """Create a large array of noise to be shared by all workers.""" seed = 123 noise = np.random.RandomState(seed).randn(count).astype(np.float32) return noise class SharedNoiseTable: def __init__(self, noise): self.noise = noise assert self.noise.dtype == np.float32 def get(self, i, dim): return self.noise[i:i + dim] def sample_index(self, dim): return np.random.randint(0, len(self.noise) - dim + 1) def get_delta(self, dim): idx = self.sample_index(dim) return idx, self.get(idx, dim) @ray.remote class Worker: def __init__(self, config, env_creator, noise, worker_index, min_task_runtime=0.2): self.min_task_runtime = min_task_runtime self.config = config self.config["single_threaded"] = True self.noise = SharedNoiseTable(noise) env_context = EnvContext(config["env_config"] or {}, worker_index) self.env = env_creator(env_context) from ray.rllib import models self.preprocessor = models.ModelCatalog.get_preprocessor(self.env) policy_cls = get_policy_class(config) self.policy = policy_cls(self.env.observation_space, self.env.action_space, config) @property def filters(self): return {DEFAULT_POLICY_ID: self.policy.observation_filter} def sync_filters(self, new_filters): for k in self.filters: self.filters[k].sync(new_filters[k]) def get_filters(self, flush_after=False): return_filters = {} for k, f in self.filters.items(): return_filters[k] = f.as_serializable() if flush_after: f.clear_buffer() return return_filters def rollout(self, timestep_limit, add_noise=False): rollout_rewards, rollout_fragment_length = rollout( self.policy, self.env, timestep_limit=timestep_limit, add_noise=add_noise, offset=self.config["offset"]) return rollout_rewards, rollout_fragment_length def do_rollouts(self, params, timestep_limit=None): # Set the network weights. self.policy.set_flat_weights(params) noise_indices, returns, sign_returns, lengths = [], [], [], [] eval_returns, eval_lengths = [], [] # Perform some rollouts with noise. while (len(noise_indices) == 0): if np.random.uniform() < self.config["eval_prob"]: # Do an evaluation run with no perturbation. self.policy.set_flat_weights(params) rewards, length = self.rollout(timestep_limit, add_noise=False) eval_returns.append(rewards.sum()) eval_lengths.append(length) else: # Do a regular run with parameter perturbations. noise_index = self.noise.sample_index(self.policy.num_params) perturbation = self.config["noise_stdev"] * self.noise.get( noise_index, self.policy.num_params) # These two sampling steps could be done in parallel on # different actors letting us update twice as frequently. self.policy.set_flat_weights(params + perturbation) rewards_pos, lengths_pos = self.rollout(timestep_limit) self.policy.set_flat_weights(params - perturbation) rewards_neg, lengths_neg = self.rollout(timestep_limit) noise_indices.append(noise_index) returns.append([rewards_pos.sum(), rewards_neg.sum()]) sign_returns.append( [np.sign(rewards_pos).sum(), np.sign(rewards_neg).sum()]) lengths.append([lengths_pos, lengths_neg]) return Result( noise_indices=noise_indices, noisy_returns=returns, sign_noisy_returns=sign_returns, noisy_lengths=lengths, eval_returns=eval_returns, eval_lengths=eval_lengths) def get_policy_class(config): if config["framework"] == "torch": from ray.rllib.agents.ars.ars_torch_policy import ARSTorchPolicy policy_cls = ARSTorchPolicy else: policy_cls = ARSTFPolicy return policy_cls class ARSTrainer(Trainer): """Large-scale implementation of Augmented Random Search in Ray.""" _name = "ARS" _default_config = DEFAULT_CONFIG @override(Trainer) def _init(self, config, env_creator): validate_config(config) env_context = EnvContext(config["env_config"] or {}, worker_index=0) env = env_creator(env_context) policy_cls = get_policy_class(config) self.policy = policy_cls(env.observation_space, env.action_space, config) self.optimizer = optimizers.SGD(self.policy, config["sgd_stepsize"]) self.rollouts_used = config["rollouts_used"] self.num_rollouts = config["num_rollouts"] self.report_length = config["report_length"] # Create the shared noise table. logger.info("Creating shared noise table.") noise_id = create_shared_noise.remote(config["noise_size"]) self.noise = SharedNoiseTable(ray.get(noise_id)) # Create the actors. logger.info("Creating actors.") self.workers = [ Worker.remote(config, env_creator, noise_id, idx + 1) for idx in range(config["num_workers"]) ] self.episodes_so_far = 0 self.reward_list = [] self.tstart = time.time() @override(Trainer) def get_policy(self, policy=DEFAULT_POLICY_ID): if policy != DEFAULT_POLICY_ID: raise ValueError("ARS has no policy '{}'! Use {} " "instead.".format(policy, DEFAULT_POLICY_ID)) return self.policy @override(Trainer) def _train(self): config = self.config theta = self.policy.get_flat_weights() assert theta.dtype == np.float32 assert len(theta.shape) == 1 # Put the current policy weights in the object store. theta_id = ray.put(theta) # Use the actors to do rollouts, note that we pass in the ID of the # policy weights. results, num_episodes, num_timesteps = self._collect_results( theta_id, config["num_rollouts"]) all_noise_indices = [] all_training_returns = [] all_training_lengths = [] all_eval_returns = [] all_eval_lengths = [] # Loop over the results. for result in results: all_eval_returns += result.eval_returns all_eval_lengths += result.eval_lengths all_noise_indices += result.noise_indices all_training_returns += result.noisy_returns all_training_lengths += result.noisy_lengths assert len(all_eval_returns) == len(all_eval_lengths) assert (len(all_noise_indices) == len(all_training_returns) == len(all_training_lengths)) self.episodes_so_far += num_episodes # Assemble the results. eval_returns = np.array(all_eval_returns) eval_lengths = np.array(all_eval_lengths) noise_indices = np.array(all_noise_indices) noisy_returns = np.array(all_training_returns) noisy_lengths = np.array(all_training_lengths) # keep only the best returns # select top performing directions if rollouts_used < num_rollouts max_rewards = np.max(noisy_returns, axis=1) if self.rollouts_used > self.num_rollouts: self.rollouts_used = self.num_rollouts percentile = 100 * (1 - (self.rollouts_used / self.num_rollouts)) idx = np.arange(max_rewards.size)[ max_rewards >= np.percentile(max_rewards, percentile)] noise_idx = noise_indices[idx] noisy_returns = noisy_returns[idx, :] # Compute and take a step. g, count = utils.batched_weighted_sum( noisy_returns[:, 0] - noisy_returns[:, 1], (self.noise.get(index, self.policy.num_params) for index in noise_idx), batch_size=min(500, noisy_returns[:, 0].size)) g /= noise_idx.size # scale the returns by their standard deviation if not np.isclose(np.std(noisy_returns), 0.0): g /= np.std(noisy_returns) assert (g.shape == (self.policy.num_params, ) and g.dtype == np.float32) # Compute the new weights theta. theta, update_ratio = self.optimizer.update(-g) # Set the new weights in the local copy of the policy. self.policy.set_flat_weights(theta) # update the reward list if len(all_eval_returns) > 0: self.reward_list.append(eval_returns.mean()) # Now sync the filters FilterManager.synchronize({ DEFAULT_POLICY_ID: self.policy.observation_filter }, self.workers) info = { "weights_norm": np.square(theta).sum(), "weights_std": np.std(theta), "grad_norm": np.square(g).sum(), "update_ratio": update_ratio, "episodes_this_iter": noisy_lengths.size, "episodes_so_far": self.episodes_so_far, } result = dict( episode_reward_mean=np.mean( self.reward_list[-self.report_length:]), episode_len_mean=eval_lengths.mean(), timesteps_this_iter=noisy_lengths.sum(), info=info) return result @override(Trainer) def _stop(self): # workaround for https://github.com/ray-project/ray/issues/1516 for w in self.workers: w.__ray_terminate__.remote() @override(Trainer) def compute_action(self, observation, *args, **kwargs): action = self.policy.compute_actions(observation, update=True)[0] if kwargs.get("full_fetch"): return action, [], {} return action def _collect_results(self, theta_id, min_episodes): num_episodes, num_timesteps = 0, 0 results = [] while num_episodes < min_episodes: logger.debug( "Collected {} episodes {} timesteps so far this iter".format( num_episodes, num_timesteps)) rollout_ids = [ worker.do_rollouts.remote(theta_id) for worker in self.workers ] # Get the results of the rollouts. for result in ray.get(rollout_ids): results.append(result) # Update the number of episodes and the number of timesteps # keeping in mind that result.noisy_lengths is a list of lists, # where the inner lists have length 2. num_episodes += sum(len(pair) for pair in result.noisy_lengths) num_timesteps += sum( sum(pair) for pair in result.noisy_lengths) return results, num_episodes, num_timesteps def __getstate__(self): return { "weights": self.policy.get_flat_weights(), "filter": self.policy.observation_filter, "episodes_so_far": self.episodes_so_far, } def __setstate__(self, state): self.episodes_so_far = state["episodes_so_far"] self.policy.set_flat_weights(state["weights"]) self.policy.observation_filter = state["filter"] FilterManager.synchronize({ DEFAULT_POLICY_ID: self.policy.observation_filter }, self.workers)