import numpy as np import unittest import ray import ray.rllib.agents.pg as pg from ray.rllib.evaluation.postprocessing import Postprocessing from ray.rllib.models.tf.tf_action_dist import Categorical from ray.rllib.models.torch.torch_action_dist import TorchCategorical from ray.rllib.policy.sample_batch import SampleBatch from ray.rllib.utils import check, fc class TestPG(unittest.TestCase): ray.init() def test_pg_compilation(self): """Test whether a PGTrainer can be built with both frameworks.""" config = pg.DEFAULT_CONFIG.copy() config["num_workers"] = 0 # Run locally. # tf. trainer = pg.PGTrainer(config=config, env="CartPole-v0") num_iterations = 2 for i in range(num_iterations): trainer.train() # Torch. config["use_pytorch"] = True trainer = pg.PGTrainer(config=config, env="CartPole-v0") for i in range(num_iterations): trainer.train() def test_pg_loss_functions(self): """Tests the PG loss function math.""" config = pg.DEFAULT_CONFIG.copy() config["num_workers"] = 0 # Run locally. config["eager"] = True config["gamma"] = 0.99 config["model"]["fcnet_hiddens"] = [10] config["model"]["fcnet_activation"] = "linear" # Fake CartPole episode of n timesteps. train_batch = { SampleBatch.CUR_OBS: np.array([ [0.1, 0.2, 0.3, 0.4], [0.5, 0.6, 0.7, 0.8], [0.9, 1.0, 1.1, 1.2] ]), SampleBatch.ACTIONS: np.array([0, 1, 1]), SampleBatch.REWARDS: np.array([1.0, 1.0, 1.0]), SampleBatch.DONES: np.array([False, False, True]) } # tf. trainer = pg.PGTrainer(config=config, env="CartPole-v0") policy = trainer.get_policy() vars = policy.model.trainable_variables() # Post-process (calculate simple (non-GAE) advantages) and attach to # train_batch dict. # A = [0.99^2 * 1.0 + 0.99 * 1.0 + 1.0, 0.99 * 1.0 + 1.0, 1.0] = # [2.9701, 1.99, 1.0] train_batch = pg.post_process_advantages(policy, train_batch) # Check Advantage values. check(train_batch[Postprocessing.ADVANTAGES], [2.9701, 1.99, 1.0]) # Actual loss results. results = pg.pg_tf_loss( policy, policy.model, dist_class=Categorical, train_batch=train_batch ) # Calculate expected results. expected_logits = fc( fc( train_batch[SampleBatch.CUR_OBS], vars[0].numpy(), vars[1].numpy() ), vars[2].numpy(), vars[3].numpy() ) expected_logp = Categorical(expected_logits, policy.model).logp( train_batch[SampleBatch.ACTIONS] ) expected_loss = -np.mean( expected_logp * train_batch[Postprocessing.ADVANTAGES] ) check(results.numpy(), expected_loss, decimals=4) # Torch. config["use_pytorch"] = True trainer = pg.PGTrainer(config=config, env="CartPole-v0") policy = trainer.get_policy() train_batch = policy._lazy_tensor_dict(train_batch) results = pg.pg_torch_loss( policy, policy.model, dist_class=TorchCategorical, train_batch=train_batch ) expected_logits = policy.model._last_output expected_logp = TorchCategorical(expected_logits, policy.model).logp( train_batch[SampleBatch.ACTIONS] ) expected_loss = -np.mean( expected_logp.detach().numpy() * train_batch[Postprocessing.ADVANTAGES].numpy() ) check(results.detach().numpy(), expected_loss, decimals=4)