# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for V-trace. For details and theory see: "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Espeholt, Soyer, Munos et al. """ from absl.testing import parameterized import numpy as np import vtrace from ray.rllib.utils import try_import_tf tf = try_import_tf() def _shaped_arange(*shape): """Runs np.arange, converts to float and reshapes.""" return np.arange(np.prod(shape), dtype=np.float32).reshape(*shape) def _softmax(logits): """Applies softmax non-linearity on inputs.""" return np.exp(logits) / np.sum(np.exp(logits), axis=-1, keepdims=True) def _ground_truth_calculation(discounts, log_rhos, rewards, values, bootstrap_value, clip_rho_threshold, clip_pg_rho_threshold): """Calculates the ground truth for V-trace in Python/Numpy.""" vs = [] seq_len = len(discounts) rhos = np.exp(log_rhos) cs = np.minimum(rhos, 1.0) clipped_rhos = rhos if clip_rho_threshold: clipped_rhos = np.minimum(rhos, clip_rho_threshold) clipped_pg_rhos = rhos if clip_pg_rho_threshold: clipped_pg_rhos = np.minimum(rhos, clip_pg_rho_threshold) # This is a very inefficient way to calculate the V-trace ground truth. # We calculate it this way because it is close to the mathematical notation # of # V-trace. # v_s = V(x_s) # + \sum^{T-1}_{t=s} \gamma^{t-s} # * \prod_{i=s}^{t-1} c_i # * \rho_t (r_t + \gamma V(x_{t+1}) - V(x_t)) # Note that when we take the product over c_i, we write `s:t` as the # notation # of the paper is inclusive of the `t-1`, but Python is exclusive. # Also note that np.prod([]) == 1. values_t_plus_1 = np.concatenate( [values, bootstrap_value[None, :]], axis=0) for s in range(seq_len): v_s = np.copy(values[s]) # Very important copy. for t in range(s, seq_len): v_s += (np.prod(discounts[s:t], axis=0) * np.prod(cs[s:t], axis=0) * clipped_rhos[t] * (rewards[t] + discounts[t] * values_t_plus_1[t + 1] - values[t])) vs.append(v_s) vs = np.stack(vs, axis=0) pg_advantages = (clipped_pg_rhos * (rewards + discounts * np.concatenate( [vs[1:], bootstrap_value[None, :]], axis=0) - values)) return vtrace.VTraceReturns(vs=vs, pg_advantages=pg_advantages) class LogProbsFromLogitsAndActionsTest(tf.test.TestCase, parameterized.TestCase): @parameterized.named_parameters(("Batch1", 1), ("Batch2", 2)) def test_log_probs_from_logits_and_actions(self, batch_size): """Tests log_probs_from_logits_and_actions.""" seq_len = 7 num_actions = 3 policy_logits = _shaped_arange(seq_len, batch_size, num_actions) + 10 actions = np.random.randint( 0, num_actions - 1, size=(seq_len, batch_size), dtype=np.int32) action_log_probs_tensor = vtrace.log_probs_from_logits_and_actions( policy_logits, actions) # Ground Truth # Using broadcasting to create a mask that indexes action logits action_index_mask = actions[..., None] == np.arange(num_actions) def index_with_mask(array, mask): return array[mask].reshape(*array.shape[:-1]) # Note: Normally log(softmax) is not a good idea because it's not # numerically stable. However, in this test we have well-behaved # values. ground_truth_v = index_with_mask( np.log(_softmax(policy_logits)), action_index_mask) with self.test_session() as session: self.assertAllClose(ground_truth_v, session.run(action_log_probs_tensor)) class VtraceTest(tf.test.TestCase, parameterized.TestCase): @parameterized.named_parameters(("Batch1", 1), ("Batch5", 5)) def test_vtrace(self, batch_size): """Tests V-trace against ground truth data calculated in python.""" seq_len = 5 # Create log_rhos such that rho will span from near-zero to above the # clipping thresholds. In particular, calculate log_rhos in # [-2.5, 2.5), # so that rho is in approx [0.08, 12.2). log_rhos = _shaped_arange(seq_len, batch_size) / (batch_size * seq_len) log_rhos = 5 * (log_rhos - 0.5) # [0.0, 1.0) -> [-2.5, 2.5). values = { "log_rhos": log_rhos, # T, B where B_i: [0.9 / (i+1)] * T "discounts": np.array([[0.9 / (b + 1) for b in range(batch_size)] for _ in range(seq_len)]), "rewards": _shaped_arange(seq_len, batch_size), "values": _shaped_arange(seq_len, batch_size) / batch_size, "bootstrap_value": _shaped_arange(batch_size) + 1.0, "clip_rho_threshold": 3.7, "clip_pg_rho_threshold": 2.2, } output = vtrace.from_importance_weights(**values) with self.test_session() as session: output_v = session.run(output) ground_truth_v = _ground_truth_calculation(**values) for a, b in zip(ground_truth_v, output_v): self.assertAllClose(a, b) @parameterized.named_parameters(("Batch1", 1), ("Batch2", 2)) def test_vtrace_from_logits(self, batch_size): """Tests V-trace calculated from logits.""" seq_len = 5 num_actions = 3 clip_rho_threshold = None # No clipping. clip_pg_rho_threshold = None # No clipping. # Intentionally leaving shapes unspecified to test if V-trace can # deal with that. placeholders = { # T, B, NUM_ACTIONS "behaviour_policy_logits": tf.placeholder( dtype=tf.float32, shape=[None, None, None]), # T, B, NUM_ACTIONS "target_policy_logits": tf.placeholder( dtype=tf.float32, shape=[None, None, None]), "actions": tf.placeholder(dtype=tf.int32, shape=[None, None]), "discounts": tf.placeholder(dtype=tf.float32, shape=[None, None]), "rewards": tf.placeholder(dtype=tf.float32, shape=[None, None]), "values": tf.placeholder(dtype=tf.float32, shape=[None, None]), "bootstrap_value": tf.placeholder(dtype=tf.float32, shape=[None]), } from_logits_output = vtrace.from_logits( clip_rho_threshold=clip_rho_threshold, clip_pg_rho_threshold=clip_pg_rho_threshold, **placeholders) target_log_probs = vtrace.log_probs_from_logits_and_actions( placeholders["target_policy_logits"], placeholders["actions"]) behaviour_log_probs = vtrace.log_probs_from_logits_and_actions( placeholders["behaviour_policy_logits"], placeholders["actions"]) log_rhos = target_log_probs - behaviour_log_probs ground_truth = (log_rhos, behaviour_log_probs, target_log_probs) values = { "behaviour_policy_logits": _shaped_arange(seq_len, batch_size, num_actions), "target_policy_logits": _shaped_arange(seq_len, batch_size, num_actions), "actions": np.random.randint( 0, num_actions - 1, size=(seq_len, batch_size)), "discounts": np.array( # T, B where B_i: [0.9 / (i+1)] * T [[0.9 / (b + 1) for b in range(batch_size)] for _ in range(seq_len)]), "rewards": _shaped_arange(seq_len, batch_size), "values": _shaped_arange(seq_len, batch_size) / batch_size, "bootstrap_value": _shaped_arange(batch_size) + 1.0, # B } feed_dict = {placeholders[k]: v for k, v in values.items()} with self.test_session() as session: from_logits_output_v = session.run( from_logits_output, feed_dict=feed_dict) (ground_truth_log_rhos, ground_truth_behaviour_action_log_probs, ground_truth_target_action_log_probs) = session.run( ground_truth, feed_dict=feed_dict) # Calculate V-trace using the ground truth logits. from_iw = vtrace.from_importance_weights( log_rhos=ground_truth_log_rhos, discounts=values["discounts"], rewards=values["rewards"], values=values["values"], bootstrap_value=values["bootstrap_value"], clip_rho_threshold=clip_rho_threshold, clip_pg_rho_threshold=clip_pg_rho_threshold) with self.test_session() as session: from_iw_v = session.run(from_iw) self.assertAllClose(from_iw_v.vs, from_logits_output_v.vs) self.assertAllClose(from_iw_v.pg_advantages, from_logits_output_v.pg_advantages) self.assertAllClose(ground_truth_behaviour_action_log_probs, from_logits_output_v.behaviour_action_log_probs) self.assertAllClose(ground_truth_target_action_log_probs, from_logits_output_v.target_action_log_probs) self.assertAllClose(ground_truth_log_rhos, from_logits_output_v.log_rhos) def test_higher_rank_inputs_for_importance_weights(self): """Checks support for additional dimensions in inputs.""" placeholders = { "log_rhos": tf.placeholder( dtype=tf.float32, shape=[None, None, 1]), "discounts": tf.placeholder( dtype=tf.float32, shape=[None, None, 1]), "rewards": tf.placeholder( dtype=tf.float32, shape=[None, None, 42]), "values": tf.placeholder(dtype=tf.float32, shape=[None, None, 42]), "bootstrap_value": tf.placeholder( dtype=tf.float32, shape=[None, 42]) } output = vtrace.from_importance_weights(**placeholders) self.assertEqual(output.vs.shape.as_list()[-1], 42) def test_inconsistent_rank_inputs_for_importance_weights(self): """Test one of many possible errors in shape of inputs.""" placeholders = { "log_rhos": tf.placeholder( dtype=tf.float32, shape=[None, None, 1]), "discounts": tf.placeholder( dtype=tf.float32, shape=[None, None, 1]), "rewards": tf.placeholder( dtype=tf.float32, shape=[None, None, 42]), "values": tf.placeholder(dtype=tf.float32, shape=[None, None, 42]), # Should be [None, 42]. "bootstrap_value": tf.placeholder(dtype=tf.float32, shape=[None]) } with self.assertRaisesRegexp(ValueError, "must have rank 2"): vtrace.from_importance_weights(**placeholders) if __name__ == "__main__": tf.test.main()