""" Example showing how you can use your trained policy for inference (computing actions) in an environment. Includes options for LSTM-based models (--use-lstm), attention-net models (--use-attention), and plain (non-recurrent) models. """ import argparse import gym import os import ray from ray import tune from ray.rllib.algorithms.registry import get_algorithm_class parser = argparse.ArgumentParser() parser.add_argument( "--run", type=str, default="PPO", help="The RLlib-registered algorithm to use." ) parser.add_argument("--num-cpus", type=int, default=0) parser.add_argument( "--framework", choices=["tf", "tf2", "tfe", "torch"], default="tf", help="The DL framework specifier.", ) parser.add_argument("--eager-tracing", action="store_true") parser.add_argument( "--stop-iters", type=int, default=200, help="Number of iterations to train before we do inference.", ) parser.add_argument( "--stop-timesteps", type=int, default=100000, help="Number of timesteps to train before we do inference.", ) parser.add_argument( "--stop-reward", type=float, default=150.0, help="Reward at which we stop training before we do inference.", ) parser.add_argument( "--explore-during-inference", action="store_true", help="Whether the trained policy should use exploration during action " "inference.", ) parser.add_argument( "--num-episodes-during-inference", type=int, default=10, help="Number of episodes to do inference over after training.", ) if __name__ == "__main__": args = parser.parse_args() ray.init(num_cpus=args.num_cpus or None) config = { "env": "FrozenLake-v1", # Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0. "num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")), "framework": args.framework, # Run with tracing enabled for tfe/tf2? "eager_tracing": args.eager_tracing, } stop = { "training_iteration": args.stop_iters, "timesteps_total": args.stop_timesteps, "episode_reward_mean": args.stop_reward, } print("Training policy until desired reward/timesteps/iterations. ...") results = tune.run( args.run, config=config, stop=stop, verbose=2, checkpoint_freq=1, checkpoint_at_end=True, ) print("Training completed. Restoring new Trainer for action inference.") # Get the last checkpoint from the above training run. checkpoint = results.get_last_checkpoint() # Create new Trainer and restore its state from the last checkpoint. algo = get_algorithm_class(args.run)(config=config) algo.restore(checkpoint) # Create the env to do inference in. env = gym.make("FrozenLake-v1") obs = env.reset() num_episodes = 0 episode_reward = 0.0 while num_episodes < args.num_episodes_during_inference: # Compute an action (`a`). a = algo.compute_single_action( observation=obs, explore=args.explore_during_inference, policy_id="default_policy", # <- default value ) # Send the computed action `a` to the env. obs, reward, done, _ = env.step(a) episode_reward += reward # Is the episode `done`? -> Reset. if done: print(f"Episode done: Total reward = {episode_reward}") obs = env.reset() num_episodes += 1 episode_reward = 0.0 ray.shutdown()