"""The two-step game from QMIX: https://arxiv.org/pdf/1803.11485.pdf Configurations you can try: - normal policy gradients (PG) - contrib/MADDPG - QMIX - APEX_QMIX See also: centralized_critic.py for centralized critic PPO on this game. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse from gym.spaces import Tuple, Discrete import numpy as np import ray from ray import tune from ray.tune import register_env, grid_search from ray.rllib.env.multi_agent_env import MultiAgentEnv parser = argparse.ArgumentParser() parser.add_argument("--stop", type=int, default=50000) parser.add_argument("--run", type=str, default="PG") class TwoStepGame(MultiAgentEnv): action_space = Discrete(2) # Each agent gets a separate [3] obs space, to ensure that they can # learn meaningfully different Q values even with a shared Q model. observation_space = Discrete(6) def __init__(self, env_config): self.state = None self.agent_1 = 0 self.agent_2 = 1 # MADDPG emits action logits instead of actual discrete actions self.actions_are_logits = env_config.get("actions_are_logits", False) def reset(self): self.state = 0 return {self.agent_1: self.state, self.agent_2: self.state + 3} def step(self, action_dict): if self.actions_are_logits: action_dict = { k: np.random.choice([0, 1], p=v) for k, v in action_dict.items() } if self.state == 0: action = action_dict[self.agent_1] assert action in [0, 1], action if action == 0: self.state = 1 else: self.state = 2 global_rew = 0 done = False elif self.state == 1: global_rew = 7 done = True else: if action_dict[self.agent_1] == 0 and action_dict[self. agent_2] == 0: global_rew = 0 elif action_dict[self.agent_1] == 1 and action_dict[self. agent_2] == 1: global_rew = 8 else: global_rew = 1 done = True rewards = { self.agent_1: global_rew / 2.0, self.agent_2: global_rew / 2.0 } obs = {self.agent_1: self.state, self.agent_2: self.state + 3} dones = {"__all__": done} infos = {} return obs, rewards, dones, infos if __name__ == "__main__": args = parser.parse_args() grouping = { "group_1": [0, 1], } obs_space = Tuple([ TwoStepGame.observation_space, TwoStepGame.observation_space, ]) act_space = Tuple([ TwoStepGame.action_space, TwoStepGame.action_space, ]) register_env( "grouped_twostep", lambda config: TwoStepGame(config).with_agent_groups( grouping, obs_space=obs_space, act_space=act_space)) if args.run == "contrib/MADDPG": obs_space_dict = { "agent_1": TwoStepGame.observation_space, "agent_2": TwoStepGame.observation_space, } act_space_dict = { "agent_1": TwoStepGame.action_space, "agent_2": TwoStepGame.action_space, } config = { "learning_starts": 100, "env_config": { "actions_are_logits": True, }, "multiagent": { "policies": { "pol1": (None, TwoStepGame.observation_space, TwoStepGame.action_space, { "agent_id": 0, }), "pol2": (None, TwoStepGame.observation_space, TwoStepGame.action_space, { "agent_id": 1, }), }, "policy_mapping_fn": lambda x: "pol1" if x == 0 else "pol2", }, } group = False elif args.run == "QMIX": config = { "sample_batch_size": 4, "train_batch_size": 32, "exploration_final_eps": 0.0, "num_workers": 0, "mixer": grid_search([None, "qmix", "vdn"]), } group = True elif args.run == "APEX_QMIX": config = { "num_gpus": 0, "num_workers": 2, "optimizer": { "num_replay_buffer_shards": 1, }, "min_iter_time_s": 3, "buffer_size": 1000, "learning_starts": 1000, "train_batch_size": 128, "sample_batch_size": 32, "target_network_update_freq": 500, "timesteps_per_iteration": 1000, } group = True else: config = {} group = False ray.init() tune.run( args.run, stop={ "timesteps_total": args.stop, }, config=dict(config, **{ "env": "grouped_twostep" if group else TwoStepGame, }), )