.. _spark-on-ray: ************************** Using Spark on Ray (RayDP) ************************** RayDP combines your Spark and Ray clusters, making it easy to do large scale data processing using the PySpark API and seemlessly use that data to train your models using TensorFlow and PyTorch. For more information and examples, see the RayDP Github page: https://github.com/oap-project/raydp ================ Installing RayDP ================ RayDP can be installed from PyPI and supports PySpark 3.0 and 3.1. .. code-block bash pip install raydp .. note:: RayDP requires ray >= 1.2.0 .. note:: In order to run Spark, the head and worker nodes will need Java installed. ======================== Creating a Spark Session ======================== To create a spark session, call ``raydp.init_spark`` For example, .. code-block:: python import ray import raydp ray.init() spark = raydp.init_spark( app_name = "example", num_executors = 10, executor_cores = 64, executor_memory = "256GB" ) ==================================== Deep Learning with a Spark DataFrame ==================================== ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Training a Spark DataFrame with TensorFlow ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ``raydp.tf.TFEstimator`` provides an API for training with TensorFlow. .. code-block:: python from pyspark.sql.functions import col df = spark.range(1, 1000) # calculate z = x + 2y + 1000 df = df.withColumn("x", col("id")*2)\ .withColumn("y", col("id") + 200)\ .withColumn("z", col("x") + 2*col("y") + 1000) from raydp.utils import random_split train_df, test_df = random_split(df, [0.7, 0.3]) # TensorFlow code from tensorflow import keras input_1 = keras.Input(shape=(1,)) input_2 = keras.Input(shape=(1,)) concatenated = keras.layers.concatenate([input_1, input_2]) output = keras.layers.Dense(1, activation='sigmoid')(concatenated) model = keras.Model(inputs=[input_1, input_2], outputs=output) optimizer = keras.optimizers.Adam(0.01) loss = keras.losses.MeanSquaredError() from raydp.tf import TFEstimator estimator = TFEstimator( num_workers=2, model=model, optimizer=optimizer, loss=loss, metrics=["accuracy", "mse"], feature_columns=["x", "y"], label_column="z", batch_size=1000, num_epochs=2, use_gpu=False, config={"fit_config": {"steps_per_epoch": 2}}) estimator.fit_on_spark(train_df, test_df) tensorflow_model = estimator.get_model() estimator.shutdown() ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Training a Spark DataFrame with PyTorch ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Similarly, ``raydp.torch.TorchEstimator`` provides an API for training with PyTorch. .. code-block:: python from pyspark.sql.functions import col df = spark.range(1, 1000) # calculate z = x + 2y + 1000 df = df.withColumn("x", col("id")*2)\ .withColumn("y", col("id") + 200)\ .withColumn("z", col("x") + 2*col("y") + 1000) from raydp.utils import random_split train_df, test_df = random_split(df, [0.7, 0.3]) # PyTorch Code import torch class LinearModel(torch.nn.Module): def __init__(self): super(LinearModel, self).__init__() self.linear = torch.nn.Linear(2, 1) def forward(self, x, y): x = torch.cat([x, y], dim=1) return self.linear(x) model = LinearModel() optimizer = torch.optim.Adam(model.parameters()) loss_fn = torch.nn.MSELoss() def lr_scheduler_creator(optimizer, config): return torch.optim.lr_scheduler.MultiStepLR( optimizer, milestones=[150, 250, 350], gamma=0.1) # You can use the RayDP Estimator API or libraries like Ray Train for distributed training. from raydp.torch import TorchEstimator estimator = TorchEstimator( num_workers = 2, model = model, optimizer = optimizer, loss = loss_fn, lr_scheduler_creator=lr_scheduler_creator, feature_columns = ["x", "y"], label_column = ["z"], batch_size = 1000, num_epochs = 2 ) estimator.fit_on_spark(train_df, test_df) pytorch_model = estimator.get_model() estimator.shutdown()