import click import json import os import ray import ray._private.test_utils as test_utils import time import tqdm sleep_time = 300 def test_max_running_tasks(num_tasks): cpus_per_task = 0.25 @ray.remote(num_cpus=cpus_per_task) def task(): time.sleep(sleep_time) refs = [ task.remote() for _ in tqdm.trange(num_tasks, desc="Launching tasks") ] max_cpus = ray.cluster_resources()["CPU"] min_cpus_available = max_cpus for _ in tqdm.trange(int(sleep_time / 0.1), desc="Waiting"): try: cur_cpus = ray.available_resources().get("CPU", 0) min_cpus_available = min(min_cpus_available, cur_cpus) except Exception: # There are race conditions `.get` can fail if a new heartbeat # comes at the same time. pass time.sleep(0.1) # There are some relevant magic numbers in this check. 10k tasks each # require 1/4 cpus. Therefore, ideally 2.5k cpus will be used. err_str = f"Only {max_cpus - min_cpus_available}/{max_cpus} cpus used." threshold = num_tasks * cpus_per_task * 0.75 assert max_cpus - min_cpus_available > threshold, err_str for _ in tqdm.trange(num_tasks, desc="Ensuring all tasks have finished"): done, refs = ray.wait(refs) assert ray.get(done[0]) is None def no_resource_leaks(): return ray.available_resources() == ray.cluster_resources() @click.command() @click.option( "--num-tasks", required=True, type=int, help="Number of tasks to launch.") def test(num_tasks): ray.init(address="auto") test_utils.wait_for_condition(no_resource_leaks) start_time = time.time() test_max_running_tasks(num_tasks) end_time = time.time() test_utils.wait_for_condition(no_resource_leaks) rate = num_tasks / (end_time - start_time - sleep_time) print(f"Success! Started {num_tasks} tasks in {end_time - start_time}s. " f"({rate} tasks/s)") if "TEST_OUTPUT_JSON" in os.environ: out_file = open(os.environ["TEST_OUTPUT_JSON"], "w") results = { "tasks_per_second": rate, "num_tasks": num_tasks, "time": end_time - start_time, "success": "1" } json.dump(results, out_file) if __name__ == "__main__": test()