import time import json import ray import numpy as np from typing import List from ray import ObjectRef from ray.cluster_utils import Cluster num_nodes = 4 object_store_size = 100 * 1024 * 1024 # 100 MB. partition_size = int(10e6) # 20 MB num_partitions = 100 rows_per_partition = partition_size // (8 * 2) c = Cluster() c.add_node( num_cpus=4, object_store_memory=object_store_size, _system_config={ "automatic_object_spilling_enabled": True, "max_io_workers": 2, "object_spilling_config": json.dumps( { "type": "filesystem", "params": { "directory_path": "/tmp/spill" } }, separators=(",", ":")) }) # Add fake 4 nodes cluster. for _ in range(num_nodes - 1): # subtract a head node. c.add_node(num_cpus=4, object_store_memory=object_store_size) c.wait_for_nodes() ray.init(address=c.address) @ray.remote class Counter: def __init__(self): self.num_map = 0 self.num_reduce = 0 def inc(self): self.num_map += 1 print("Num map tasks finished", self.num_map) def inc2(self): self.num_reduce += 1 print("Num reduce tasks finished", self.num_reduce) def finish(self): pass # object store peak memory: O(partition size / num partitions) # heap memory: O(partition size / num partitions) @ray.remote(num_returns=num_partitions) def shuffle_map_streaming(i, counter_handle=None) -> List[ObjectRef[np.ndarray]]: outputs = [ ray.put( np.ones((rows_per_partition // num_partitions, 2), dtype=np.int64)) for _ in range(num_partitions) ] counter_handle.inc.remote() return outputs # object store peak memory: O(partition size / num partitions) # heap memory: O(partition size) -- TODO can be reduced too @ray.remote def shuffle_reduce_streaming(*inputs, counter_handle=None) -> np.ndarray: out = None for chunk in inputs: if out is None: out = ray.get(chunk) else: out = np.concatenate([out, ray.get(chunk)]) counter_handle.inc2.remote() return out shuffle_map = shuffle_map_streaming shuffle_reduce = shuffle_reduce_streaming def run_shuffle(): counter = Counter.remote() start = time.time() print("start map") shuffle_map_out = [ shuffle_map.remote(i, counter_handle=counter) for i in range(num_partitions) ] # wait until all map is done before reduce phase. for out in shuffle_map_out: ray.get(out) # Start reducing shuffle_reduce_out = [ shuffle_reduce.remote( *[shuffle_map_out[i][j] for i in range(num_partitions)], counter_handle=counter) for j in range(num_partitions) ] print("start shuffle.") total_rows = 0 ready, unready = ray.wait(shuffle_reduce_out) while unready: ready, unready = ray.wait(unready) for output in ready: total_rows += ray.get(output).shape[0] delta = time.time() - start ray.get(counter.finish.remote()) return total_rows, delta iteration = 1 delta_sum = 0 total_bytes = None while True: print(f"Start the iteration, {iteration}") total_rows, delta = run_shuffle() print(f"Iteration {iteration} done.") print("Shuffled", total_rows * 8 * 2, "bytes in", delta, "seconds") delta_sum += delta total_bytes = total_rows assert total_bytes == total_rows iteration += 1 assert total_bytes is not None print(f"Long running shuffle done. Please check if memory usage is steady. " f"The average shuffling that shuffles {total_bytes / 1024 / 1024} MB" f"took {delta_sum / iteration} " f"for {iteration} number of itertaions.")