import unittest import ray import ray.rllib.agents.sac as sac from ray.rllib.utils.framework import try_import_tf, try_import_torch from ray.rllib.utils.test_utils import check_compute_single_action, framework_iterator tf1, tf, tfv = try_import_tf() torch, nn = try_import_torch() class TestRNNSAC(unittest.TestCase): @classmethod def setUpClass(cls) -> None: ray.init() @classmethod def tearDownClass(cls) -> None: ray.shutdown() def test_rnnsac_compilation(self): """Test whether a R2D2Trainer can be built on all frameworks.""" config = sac.RNNSAC_DEFAULT_CONFIG.copy() config["num_workers"] = 0 # Run locally. # Wrap with an LSTM and use a very simple base-model. config["model"] = { "max_seq_len": 20, } config["policy_model"] = { "use_lstm": True, "lstm_cell_size": 64, "fcnet_hiddens": [10], "lstm_use_prev_action": True, "lstm_use_prev_reward": True, } config["Q_model"] = { "use_lstm": True, "lstm_cell_size": 64, "fcnet_hiddens": [10], "lstm_use_prev_action": True, "lstm_use_prev_reward": True, } # Test with PR activated. config["prioritized_replay"] = True config["burn_in"] = 20 config["zero_init_states"] = True config["lr"] = 5e-4 num_iterations = 1 # Test building an RNNSAC agent in all frameworks. for _ in framework_iterator(config, frameworks="torch"): trainer = sac.RNNSACTrainer(config=config, env="CartPole-v0") for i in range(num_iterations): results = trainer.train() print(results) check_compute_single_action( trainer, include_state=True, include_prev_action_reward=True, ) if __name__ == "__main__": import pytest import sys sys.exit(pytest.main(["-v", __file__]))