# flake8: noqa # isort: skip_file # __mlflow_checkpoint_start__ from ray.air.checkpoint import Checkpoint from sklearn.ensemble import RandomForestClassifier import mlflow.sklearn # Create an sklearn classifier clf = RandomForestClassifier(max_depth=7, random_state=0) # ... e.g. train model with clf.fit() # Save model using MLflow mlflow.sklearn.save_model(clf, "model_directory") # Create checkpoint object from path checkpoint = Checkpoint.from_directory("model_directory") # Write it to some other directory checkpoint.to_directory("other_directory") # You can also use `checkpoint.to_uri/from_uri` to # read from/write to cloud storage # We can now use MLflow to re-load the model clf = mlflow.sklearn.load_model("other_directory") # It is guaranteed that the original data was recovered assert isinstance(clf, RandomForestClassifier) # __mlflow_checkpoint_end__