from __future__ import absolute_import from __future__ import division from __future__ import print_function import ray import numpy as np import tensorflow as tf def get_batch(data, batch_index, batch_size): # This method currently drops data when num_data is not divisible by # batch_size. num_data = data.shape[0] num_batches = num_data // batch_size batch_index %= num_batches return data[(batch_index * batch_size):((batch_index + 1) * batch_size)] def weight(shape, stddev): initial = tf.truncated_normal(shape, stddev=stddev) return tf.Variable(initial) def bias(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding="SAME") def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME") def cnn_setup(x, y, keep_prob, lr, stddev): first_hidden = 32 second_hidden = 64 fc_hidden = 1024 W_conv1 = weight([5, 5, 1, first_hidden], stddev) B_conv1 = bias([first_hidden]) x_image = tf.reshape(x, [-1, 28, 28, 1]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + B_conv1) h_pool1 = max_pool_2x2(h_conv1) W_conv2 = weight([5, 5, first_hidden, second_hidden], stddev) b_conv2 = bias([second_hidden]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) W_fc1 = weight([7 * 7 * second_hidden, fc_hidden], stddev) b_fc1 = bias([fc_hidden]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * second_hidden]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) h_fc1_drop= tf.nn.dropout(h_fc1, keep_prob) W_fc2 = weight([fc_hidden, 10], stddev) b_fc2 = bias([10]) y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) cross_entropy = tf.reduce_mean(-tf.reduce_sum(y * tf.log(y_conv), reduction_indices=[1])) correct_pred = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y, 1)) return tf.train.AdamOptimizer(lr).minimize(cross_entropy), tf.reduce_mean(tf.cast(correct_pred, tf.float32)) # Define a remote function that takes a set of hyperparameters as well as the # data, consructs and trains a network, and returns the validation accuracy. @ray.remote def train_cnn_and_compute_accuracy(params, steps, train_images, train_labels, validation_images, validation_labels): # Extract the hyperparameters from the params dictionary. learning_rate = params["learning_rate"] batch_size = params["batch_size"] keep = 1 - params["dropout"] stddev = params["stddev"] # Create the input placeholders for the network. x = tf.placeholder(tf.float32, shape=[None, 784]) y = tf.placeholder(tf.float32, shape=[None, 10]) keep_prob = tf.placeholder(tf.float32) # Create the network. train_step, accuracy = cnn_setup(x, y, keep_prob, learning_rate, stddev) # Do the training and evaluation. with tf.Session() as sess: # Initialize the network weights. sess.run(tf.global_variables_initializer()) for i in range(1, steps + 1): # Fetch the next batch of data. image_batch = get_batch(train_images, i, batch_size) label_batch = get_batch(train_labels, i, batch_size) # Do one step of training. sess.run(train_step, feed_dict={x: image_batch, y: label_batch, keep_prob: keep}) if i % 100 == 0: # Estimate the training accuracy every once in a while. train_ac = accuracy.eval(feed_dict={x: image_batch, y: label_batch, keep_prob: 1.0}) # If the training accuracy is too low, stop early in order to avoid # wasting computation. if train_ac < 0.25: # Compute the validation accuracy and return. totalacc = accuracy.eval(feed_dict={x: validation_images, y: validation_labels, keep_prob: 1.0}) return float(totalacc) # Training is done, compute the validation accuracy and return. totalacc = accuracy.eval(feed_dict={x: validation_images, y: validation_labels, keep_prob: 1.0}) return float(totalacc)