# This code reproduces a memory leak we had in the past import os import numpy as np import ray import ray.worker import ray.services as services worker_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "test_worker.py") services.start_singlenode_cluster(return_drivers=False, num_workers_per_objstore=1, worker_path=worker_path) d = {"w": np.zeros(1000000)} obj_capsule, contained_objrefs = ray.lib.serialize_object(ray.worker.global_worker.handle, d) while True: ray.lib.deserialize_object(ray.worker.global_worker.handle, obj_capsule)