"""Utils for minibatch SGD across multiple RLlib policies.""" import numpy as np import logging from collections import defaultdict import random from ray.util import log_once from ray.rllib.evaluation.metrics import LEARNER_STATS_KEY from ray.rllib.policy.sample_batch import SampleBatch, DEFAULT_POLICY_ID, \ MultiAgentBatch logger = logging.getLogger(__name__) def averaged(kv, axis=None): """Average the value lists of a dictionary. For non-scalar values, we simply pick the first value. Args: kv (dict): dictionary with values that are lists of floats. Returns: dictionary with single averaged float as values. """ out = {} for k, v in kv.items(): if v[0] is not None and not isinstance(v[0], dict): out[k] = np.mean(v, axis=axis) else: out[k] = v[0] return out def standardized(array): """Normalize the values in an array. Args: array (np.ndarray): Array of values to normalize. Returns: array with zero mean and unit standard deviation. """ return (array - array.mean()) / max(1e-4, array.std()) def minibatches(samples, sgd_minibatch_size): """Return a generator yielding minibatches from a sample batch. Args: samples (SampleBatch): batch of samples to split up. sgd_minibatch_size (int): size of minibatches to return. Returns: generator that returns mini-SampleBatches of size sgd_minibatch_size. """ if not sgd_minibatch_size: yield samples return if isinstance(samples, MultiAgentBatch): raise NotImplementedError( "Minibatching not implemented for multi-agent in simple mode") # Replace with `if samples.seq_lens` check. if "state_in_0" in samples.data or "state_out_0" in samples.data: if log_once("not_shuffling_rnn_data_in_simple_mode"): logger.warning("Not shuffling RNN data for SGD in simple mode") else: samples.shuffle() i = 0 slices = [] if samples.seq_lens: seq_no = 0 while i < samples.count: seq_no_end = seq_no actual_count = 0 while actual_count < sgd_minibatch_size and len( samples.seq_lens) > seq_no_end: actual_count += samples.seq_lens[seq_no_end] seq_no_end += 1 slices.append((seq_no, seq_no_end)) i += actual_count seq_no = seq_no_end else: while i < samples.count: slices.append((i, i + sgd_minibatch_size)) i += sgd_minibatch_size random.shuffle(slices) for i, j in slices: yield samples.slice(i, j) def do_minibatch_sgd(samples, policies, local_worker, num_sgd_iter, sgd_minibatch_size, standardize_fields): """Execute minibatch SGD. Args: samples (SampleBatch): batch of samples to optimize. policies (dict): dictionary of policies to optimize. local_worker (RolloutWorker): master rollout worker instance. num_sgd_iter (int): number of epochs of optimization to take. sgd_minibatch_size (int): size of minibatches to use for optimization. standardize_fields (list): list of sample field names that should be normalized prior to optimization. Returns: averaged info fetches over the last SGD epoch taken. """ if isinstance(samples, SampleBatch): samples = MultiAgentBatch({DEFAULT_POLICY_ID: samples}, samples.count) fetches = {} for policy_id in policies.keys(): if policy_id not in samples.policy_batches: continue batch = samples.policy_batches[policy_id] for field in standardize_fields: batch[field] = standardized(batch[field]) for i in range(num_sgd_iter): iter_extra_fetches = defaultdict(list) for minibatch in minibatches(batch, sgd_minibatch_size): batch_fetches = (local_worker.learn_on_batch( MultiAgentBatch({ policy_id: minibatch }, minibatch.count)))[policy_id] for k, v in batch_fetches.get(LEARNER_STATS_KEY, {}).items(): iter_extra_fetches[k].append(v) logger.debug("{} {}".format(i, averaged(iter_extra_fetches))) fetches[policy_id] = averaged(iter_extra_fetches) return fetches