import argparse import os import ray from ray import tune from ray.rllib.models.tf.attention_net import GTrXLNet from ray.rllib.examples.env.look_and_push import LookAndPush, OneHot from ray.rllib.examples.env.repeat_after_me_env import RepeatAfterMeEnv from ray.rllib.examples.env.repeat_initial_obs_env import RepeatInitialObsEnv from ray.rllib.examples.env.stateless_cartpole import StatelessCartPole from ray.rllib.utils.framework import try_import_tf from ray.rllib.utils.test_utils import check_learning_achieved from ray.tune import registry tf1, tf, tfv = try_import_tf() parser = argparse.ArgumentParser() parser.add_argument("--run", type=str, default="PPO") parser.add_argument("--env", type=str, default="RepeatAfterMeEnv") parser.add_argument("--num-cpus", type=int, default=0) parser.add_argument("--torch", action="store_true") parser.add_argument("--as-test", action="store_true") parser.add_argument("--stop-iters", type=int, default=200) parser.add_argument("--stop-timesteps", type=int, default=500000) parser.add_argument("--stop-reward", type=float, default=80) if __name__ == "__main__": args = parser.parse_args() assert not args.torch, "PyTorch not supported for AttentionNets yet!" ray.init(num_cpus=args.num_cpus or None) registry.register_env("RepeatAfterMeEnv", lambda c: RepeatAfterMeEnv(c)) registry.register_env("RepeatInitialObsEnv", lambda _: RepeatInitialObsEnv()) registry.register_env("LookAndPush", lambda _: OneHot(LookAndPush())) registry.register_env("StatelessCartPole", lambda _: StatelessCartPole()) config = { "env": args.env, "env_config": { "repeat_delay": 2, }, "gamma": 0.99, # Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0. "num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", 0)), "num_workers": 0, "num_envs_per_worker": 20, "entropy_coeff": 0.001, "num_sgd_iter": 5, "vf_loss_coeff": 1e-5, "model": { "custom_model": GTrXLNet, "max_seq_len": 50, "custom_model_config": { "num_transformer_units": 1, "attn_dim": 64, "num_heads": 2, "memory_tau": 50, "head_dim": 32, "ff_hidden_dim": 32, }, }, "framework": "torch" if args.torch else "tf", } stop = { "training_iteration": args.stop_iters, "timesteps_total": args.stop_timesteps, "episode_reward_mean": args.stop_reward, } results = tune.run(args.run, config=config, stop=stop, verbose=1) if args.as_test: check_learning_achieved(results, args.stop_reward) ray.shutdown()