from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import logging import os import re import setproctitle import string import subprocess import sys import threading import time from collections import defaultdict, namedtuple, OrderedDict import numpy as np import pytest import ray import ray.ray_constants as ray_constants import ray.test.cluster_utils import ray.test.test_utils logger = logging.getLogger(__name__) def assert_equal(obj1, obj2): module_numpy = (type(obj1).__module__ == np.__name__ or type(obj2).__module__ == np.__name__) if module_numpy: empty_shape = ((hasattr(obj1, "shape") and obj1.shape == ()) or (hasattr(obj2, "shape") and obj2.shape == ())) if empty_shape: # This is a special case because currently np.testing.assert_equal # fails because we do not properly handle different numerical # types. assert obj1 == obj2, ("Objects {} and {} are " "different.".format(obj1, obj2)) else: np.testing.assert_equal(obj1, obj2) elif hasattr(obj1, "__dict__") and hasattr(obj2, "__dict__"): special_keys = ["_pytype_"] assert (set(list(obj1.__dict__.keys()) + special_keys) == set( list(obj2.__dict__.keys()) + special_keys)), ("Objects {} " "and {} are " "different.".format( obj1, obj2)) for key in obj1.__dict__.keys(): if key not in special_keys: assert_equal(obj1.__dict__[key], obj2.__dict__[key]) elif type(obj1) is dict or type(obj2) is dict: assert_equal(obj1.keys(), obj2.keys()) for key in obj1.keys(): assert_equal(obj1[key], obj2[key]) elif type(obj1) is list or type(obj2) is list: assert len(obj1) == len(obj2), ("Objects {} and {} are lists with " "different lengths.".format( obj1, obj2)) for i in range(len(obj1)): assert_equal(obj1[i], obj2[i]) elif type(obj1) is tuple or type(obj2) is tuple: assert len(obj1) == len(obj2), ("Objects {} and {} are tuples with " "different lengths.".format( obj1, obj2)) for i in range(len(obj1)): assert_equal(obj1[i], obj2[i]) elif (ray.serialization.is_named_tuple(type(obj1)) or ray.serialization.is_named_tuple(type(obj2))): assert len(obj1) == len(obj2), ("Objects {} and {} are named tuples " "with different lengths.".format( obj1, obj2)) for i in range(len(obj1)): assert_equal(obj1[i], obj2[i]) else: assert obj1 == obj2, "Objects {} and {} are different.".format( obj1, obj2) if sys.version_info >= (3, 0): long_extras = [0, np.array([["hi", u"hi"], [1.3, 1]])] else: long_extras = [ long(0), # noqa: E501,F821 np.array([ ["hi", u"hi"], [1.3, long(1)] # noqa: E501,F821 ]) ] PRIMITIVE_OBJECTS = [ 0, 0.0, 0.9, 1 << 62, 1 << 100, 1 << 999, [1 << 100, [1 << 100]], "a", string.printable, "\u262F", u"hello world", u"\xff\xfe\x9c\x001\x000\x00", None, True, False, [], (), {}, np.int8(3), np.int32(4), np.int64(5), np.uint8(3), np.uint32(4), np.uint64(5), np.float32(1.9), np.float64(1.9), np.zeros([100, 100]), np.random.normal(size=[100, 100]), np.array(["hi", 3]), np.array(["hi", 3], dtype=object) ] + long_extras COMPLEX_OBJECTS = [ [[[[[[[[[[[[]]]]]]]]]]]], {"obj{}".format(i): np.random.normal(size=[100, 100]) for i in range(10)}, # {(): {(): {(): {(): {(): {(): {(): {(): {(): {(): { # (): {(): {}}}}}}}}}}}}}, ( (((((((((), ), ), ), ), ), ), ), ), ), { "a": { "b": { "c": { "d": {} } } } } ] class Foo(object): def __init__(self, value=0): self.value = value def __hash__(self): return hash(self.value) def __eq__(self, other): return other.value == self.value class Bar(object): def __init__(self): for i, val in enumerate(PRIMITIVE_OBJECTS + COMPLEX_OBJECTS): setattr(self, "field{}".format(i), val) class Baz(object): def __init__(self): self.foo = Foo() self.bar = Bar() def method(self, arg): pass class Qux(object): def __init__(self): self.objs = [Foo(), Bar(), Baz()] class SubQux(Qux): def __init__(self): Qux.__init__(self) class CustomError(Exception): pass Point = namedtuple("Point", ["x", "y"]) NamedTupleExample = namedtuple("Example", "field1, field2, field3, field4, field5") CUSTOM_OBJECTS = [ Exception("Test object."), CustomError(), Point(11, y=22), Foo(), Bar(), Baz(), # Qux(), SubQux(), NamedTupleExample(1, 1.0, "hi", np.zeros([3, 5]), [1, 2, 3]) ] BASE_OBJECTS = PRIMITIVE_OBJECTS + COMPLEX_OBJECTS + CUSTOM_OBJECTS LIST_OBJECTS = [[obj] for obj in BASE_OBJECTS] TUPLE_OBJECTS = [(obj, ) for obj in BASE_OBJECTS] # The check that type(obj).__module__ != "numpy" should be unnecessary, but # otherwise this seems to fail on Mac OS X on Travis. DICT_OBJECTS = ( [{ obj: obj } for obj in PRIMITIVE_OBJECTS if (obj.__hash__ is not None and type(obj).__module__ != "numpy")] + [{ 0: obj } for obj in BASE_OBJECTS] + [{ Foo(123): Foo(456) }]) RAY_TEST_OBJECTS = BASE_OBJECTS + LIST_OBJECTS + TUPLE_OBJECTS + DICT_OBJECTS @pytest.fixture def ray_start(): # Start the Ray processes. ray.init(num_cpus=1) yield None # The code after the yield will run as teardown code. ray.shutdown() @pytest.fixture def shutdown_only(): yield None # The code after the yield will run as teardown code. ray.shutdown() def test_passing_arguments_by_value(ray_start): @ray.remote def f(x): return x # Check that we can pass arguments by value to remote functions and # that they are uncorrupted. for obj in RAY_TEST_OBJECTS: assert_equal(obj, ray.get(f.remote(obj))) def test_ray_recursive_objects(ray_start): class ClassA(object): pass # Make a list that contains itself. lst = [] lst.append(lst) # Make an object that contains itself as a field. a1 = ClassA() a1.field = a1 # Make two objects that contain each other as fields. a2 = ClassA() a3 = ClassA() a2.field = a3 a3.field = a2 # Make a dictionary that contains itself. d1 = {} d1["key"] = d1 # Create a list of recursive objects. recursive_objects = [lst, a1, a2, a3, d1] # Check that exceptions are thrown when we serialize the recursive # objects. for obj in recursive_objects: with pytest.raises(Exception): ray.put(obj) def test_passing_arguments_by_value_out_of_the_box(ray_start): @ray.remote def f(x): return x # Test passing lambdas. def temp(): return 1 assert ray.get(f.remote(temp))() == 1 assert ray.get(f.remote(lambda x: x + 1))(3) == 4 # Test sets. assert ray.get(f.remote(set())) == set() s = {1, (1, 2, "hi")} assert ray.get(f.remote(s)) == s # Test types. assert ray.get(f.remote(int)) == int assert ray.get(f.remote(float)) == float assert ray.get(f.remote(str)) == str class Foo(object): def __init__(self): pass # Make sure that we can put and get a custom type. Note that the result # won't be "equal" to Foo. ray.get(ray.put(Foo)) def test_putting_object_that_closes_over_object_id(ray_start): # This test is here to prevent a regression of # https://github.com/ray-project/ray/issues/1317. class Foo(object): def __init__(self): self.val = ray.put(0) def method(self): f f = Foo() with pytest.raises(ray.raylet.common_error): ray.put(f) def test_python_workers(shutdown_only): # Test the codepath for starting workers from the Python script, # instead of the local scheduler. This codepath is for debugging # purposes only. num_workers = 4 ray.worker._init( num_cpus=num_workers, start_workers_from_local_scheduler=False, start_ray_local=True) @ray.remote def f(x): return x values = ray.get([f.remote(1) for i in range(num_workers * 2)]) assert values == [1] * (num_workers * 2) def test_put_get(shutdown_only): ray.init(num_cpus=0) for i in range(100): value_before = i * 10**6 objectid = ray.put(value_before) value_after = ray.get(objectid) assert value_before == value_after for i in range(100): value_before = i * 10**6 * 1.0 objectid = ray.put(value_before) value_after = ray.get(objectid) assert value_before == value_after for i in range(100): value_before = "h" * i objectid = ray.put(value_before) value_after = ray.get(objectid) assert value_before == value_after for i in range(100): value_before = [1] * i objectid = ray.put(value_before) value_after = ray.get(objectid) assert value_before == value_after def test_custom_serializers(shutdown_only): ray.init(num_cpus=1) class Foo(object): def __init__(self): self.x = 3 def custom_serializer(obj): return 3, "string1", type(obj).__name__ def custom_deserializer(serialized_obj): return serialized_obj, "string2" ray.register_custom_serializer( Foo, serializer=custom_serializer, deserializer=custom_deserializer) assert ray.get(ray.put(Foo())) == ((3, "string1", Foo.__name__), "string2") class Bar(object): def __init__(self): self.x = 3 ray.register_custom_serializer( Bar, serializer=custom_serializer, deserializer=custom_deserializer) @ray.remote def f(): return Bar() assert ray.get(f.remote()) == ((3, "string1", Bar.__name__), "string2") def test_serialization_final_fallback(ray_start): pytest.importorskip("catboost") # This test will only run when "catboost" is installed. from catboost import CatBoostClassifier model = CatBoostClassifier( iterations=2, depth=2, learning_rate=1, loss_function="Logloss", logging_level="Verbose") reconstructed_model = ray.get(ray.put(model)) assert set(model.get_params().items()) == set( reconstructed_model.get_params().items()) def test_register_class(shutdown_only): ray.init(num_cpus=2) # Check that putting an object of a class that has not been registered # throws an exception. class TempClass(object): pass ray.get(ray.put(TempClass())) # Test subtypes of dictionaries. value_before = OrderedDict([("hello", 1), ("world", 2)]) object_id = ray.put(value_before) assert value_before == ray.get(object_id) value_before = defaultdict(lambda: 0, [("hello", 1), ("world", 2)]) object_id = ray.put(value_before) assert value_before == ray.get(object_id) value_before = defaultdict(lambda: [], [("hello", 1), ("world", 2)]) object_id = ray.put(value_before) assert value_before == ray.get(object_id) # Test passing custom classes into remote functions from the driver. @ray.remote def f(x): return x foo = ray.get(f.remote(Foo(7))) assert foo == Foo(7) regex = re.compile(r"\d+\.\d*") new_regex = ray.get(f.remote(regex)) # This seems to fail on the system Python 3 that comes with # Ubuntu, so it is commented out for now: # assert regex == new_regex # Instead, we do this: assert regex.pattern == new_regex.pattern # Test returning custom classes created on workers. @ray.remote def g(): return SubQux(), Qux() subqux, qux = ray.get(g.remote()) assert subqux.objs[2].foo.value == 0 # Test exporting custom class definitions from one worker to another # when the worker is blocked in a get. class NewTempClass(object): def __init__(self, value): self.value = value @ray.remote def h1(x): return NewTempClass(x) @ray.remote def h2(x): return ray.get(h1.remote(x)) assert ray.get(h2.remote(10)).value == 10 # Test registering multiple classes with the same name. @ray.remote(num_return_vals=3) def j(): class Class0(object): def method0(self): pass c0 = Class0() class Class0(object): def method1(self): pass c1 = Class0() class Class0(object): def method2(self): pass c2 = Class0() return c0, c1, c2 results = [] for _ in range(5): results += j.remote() for i in range(len(results) // 3): c0, c1, c2 = ray.get(results[(3 * i):(3 * (i + 1))]) c0.method0() c1.method1() c2.method2() assert not hasattr(c0, "method1") assert not hasattr(c0, "method2") assert not hasattr(c1, "method0") assert not hasattr(c1, "method2") assert not hasattr(c2, "method0") assert not hasattr(c2, "method1") @ray.remote def k(): class Class0(object): def method0(self): pass c0 = Class0() class Class0(object): def method1(self): pass c1 = Class0() class Class0(object): def method2(self): pass c2 = Class0() return c0, c1, c2 results = ray.get([k.remote() for _ in range(5)]) for c0, c1, c2 in results: c0.method0() c1.method1() c2.method2() assert not hasattr(c0, "method1") assert not hasattr(c0, "method2") assert not hasattr(c1, "method0") assert not hasattr(c1, "method2") assert not hasattr(c2, "method0") assert not hasattr(c2, "method1") def test_keyword_args(shutdown_only): @ray.remote def keyword_fct1(a, b="hello"): return "{} {}".format(a, b) @ray.remote def keyword_fct2(a="hello", b="world"): return "{} {}".format(a, b) @ray.remote def keyword_fct3(a, b, c="hello", d="world"): return "{} {} {} {}".format(a, b, c, d) ray.init(num_cpus=1) x = keyword_fct1.remote(1) assert ray.get(x) == "1 hello" x = keyword_fct1.remote(1, "hi") assert ray.get(x) == "1 hi" x = keyword_fct1.remote(1, b="world") assert ray.get(x) == "1 world" x = keyword_fct1.remote(a=1, b="world") assert ray.get(x) == "1 world" x = keyword_fct2.remote(a="w", b="hi") assert ray.get(x) == "w hi" x = keyword_fct2.remote(b="hi", a="w") assert ray.get(x) == "w hi" x = keyword_fct2.remote(a="w") assert ray.get(x) == "w world" x = keyword_fct2.remote(b="hi") assert ray.get(x) == "hello hi" x = keyword_fct2.remote("w") assert ray.get(x) == "w world" x = keyword_fct2.remote("w", "hi") assert ray.get(x) == "w hi" x = keyword_fct3.remote(0, 1, c="w", d="hi") assert ray.get(x) == "0 1 w hi" x = keyword_fct3.remote(0, b=1, c="w", d="hi") assert ray.get(x) == "0 1 w hi" x = keyword_fct3.remote(a=0, b=1, c="w", d="hi") assert ray.get(x) == "0 1 w hi" x = keyword_fct3.remote(0, 1, d="hi", c="w") assert ray.get(x) == "0 1 w hi" x = keyword_fct3.remote(0, 1, c="w") assert ray.get(x) == "0 1 w world" x = keyword_fct3.remote(0, 1, d="hi") assert ray.get(x) == "0 1 hello hi" x = keyword_fct3.remote(0, 1) assert ray.get(x) == "0 1 hello world" x = keyword_fct3.remote(a=0, b=1) assert ray.get(x) == "0 1 hello world" # Check that we cannot pass invalid keyword arguments to functions. @ray.remote def f1(): return @ray.remote def f2(x, y=0, z=0): return # Make sure we get an exception if too many arguments are passed in. with pytest.raises(Exception): f1.remote(3) with pytest.raises(Exception): f1.remote(x=3) with pytest.raises(Exception): f2.remote(0, w=0) with pytest.raises(Exception): f2.remote(3, x=3) # Make sure we get an exception if too many arguments are passed in. with pytest.raises(Exception): f2.remote(1, 2, 3, 4) @ray.remote def f3(x): return x assert ray.get(f3.remote(4)) == 4 def test_variable_number_of_args(shutdown_only): @ray.remote def varargs_fct1(*a): return " ".join(map(str, a)) @ray.remote def varargs_fct2(a, *b): return " ".join(map(str, b)) try: @ray.remote def kwargs_throw_exception(**c): return () kwargs_exception_thrown = False except Exception: kwargs_exception_thrown = True ray.init(num_cpus=1) x = varargs_fct1.remote(0, 1, 2) assert ray.get(x) == "0 1 2" x = varargs_fct2.remote(0, 1, 2) assert ray.get(x) == "1 2" assert kwargs_exception_thrown @ray.remote def f1(*args): return args @ray.remote def f2(x, y, *args): return x, y, args assert ray.get(f1.remote()) == () assert ray.get(f1.remote(1)) == (1, ) assert ray.get(f1.remote(1, 2, 3)) == (1, 2, 3) with pytest.raises(Exception): f2.remote() with pytest.raises(Exception): f2.remote(1) assert ray.get(f2.remote(1, 2)) == (1, 2, ()) assert ray.get(f2.remote(1, 2, 3)) == (1, 2, (3, )) assert ray.get(f2.remote(1, 2, 3, 4)) == (1, 2, (3, 4)) def testNoArgs(self): @ray.remote def no_op(): pass self.init_ray() ray.get(no_op.remote()) def test_defining_remote_functions(shutdown_only): ray.init(num_cpus=3) # Test that we can define a remote function in the shell. @ray.remote def f(x): return x + 1 assert ray.get(f.remote(0)) == 1 # Test that we can redefine the remote function. @ray.remote def f(x): return x + 10 while True: val = ray.get(f.remote(0)) assert val in [1, 10] if val == 10: break else: logger.info("Still using old definition of f, trying again.") # Test that we can close over plain old data. data = [ np.zeros([3, 5]), (1, 2, "a"), [0.0, 1.0, 1 << 62], 1 << 60, { "a": np.zeros(3) } ] @ray.remote def g(): return data ray.get(g.remote()) # Test that we can close over modules. @ray.remote def h(): return np.zeros([3, 5]) assert_equal(ray.get(h.remote()), np.zeros([3, 5])) @ray.remote def j(): return time.time() ray.get(j.remote()) # Test that we can define remote functions that call other remote # functions. @ray.remote def k(x): return x + 1 @ray.remote def k2(x): return ray.get(k.remote(x)) @ray.remote def m(x): return ray.get(k2.remote(x)) assert ray.get(k.remote(1)) == 2 assert ray.get(k2.remote(1)) == 2 assert ray.get(m.remote(1)) == 2 def test_submit_api(shutdown_only): ray.init(num_cpus=1, num_gpus=1, resources={"Custom": 1}) @ray.remote def f(n): return list(range(n)) @ray.remote def g(): return ray.get_gpu_ids() assert f._remote([0], num_return_vals=0) is None id1 = f._remote(args=[1], num_return_vals=1) assert ray.get(id1) == [0] id1, id2 = f._remote(args=[2], num_return_vals=2) assert ray.get([id1, id2]) == [0, 1] id1, id2, id3 = f._remote(args=[3], num_return_vals=3) assert ray.get([id1, id2, id3]) == [0, 1, 2] assert ray.get( g._remote( args=[], num_cpus=1, num_gpus=1, resources={"Custom": 1})) == [0] infeasible_id = g._remote(args=[], resources={"NonexistentCustom": 1}) ready_ids, remaining_ids = ray.wait([infeasible_id], timeout=50) assert len(ready_ids) == 0 assert len(remaining_ids) == 1 @ray.remote class Actor(object): def __init__(self, x, y=0): self.x = x self.y = y def method(self, a, b=0): return self.x, self.y, a, b def gpu_ids(self): return ray.get_gpu_ids() a = Actor._remote( args=[0], kwargs={"y": 1}, num_gpus=1, resources={"Custom": 1}) id1, id2, id3, id4 = a.method._remote( args=["test"], kwargs={"b": 2}, num_return_vals=4) assert ray.get([id1, id2, id3, id4]) == [0, 1, "test", 2] def test_get_multiple(shutdown_only): ray.init(num_cpus=1) object_ids = [ray.put(i) for i in range(10)] assert ray.get(object_ids) == list(range(10)) # Get a random choice of object IDs with duplicates. indices = list(np.random.choice(range(10), 5)) indices += indices results = ray.get([object_ids[i] for i in indices]) assert results == indices def test_get_multiple_experimental(shutdown_only): ray.init(num_cpus=1) object_ids = [ray.put(i) for i in range(10)] object_ids_tuple = tuple(object_ids) assert ray.experimental.get(object_ids_tuple) == list(range(10)) object_ids_nparray = np.array(object_ids) assert ray.experimental.get(object_ids_nparray) == list(range(10)) def test_get_dict(shutdown_only): ray.init(num_cpus=1) d = {str(i): ray.put(i) for i in range(5)} for i in range(5, 10): d[str(i)] = i result = ray.experimental.get(d) expected = {str(i): i for i in range(10)} assert result == expected def test_wait(shutdown_only): ray.init(num_cpus=1) @ray.remote def f(delay): time.sleep(delay) return 1 objectids = [f.remote(1.0), f.remote(0.5), f.remote(0.5), f.remote(0.5)] ready_ids, remaining_ids = ray.wait(objectids) assert len(ready_ids) == 1 assert len(remaining_ids) == 3 ready_ids, remaining_ids = ray.wait(objectids, num_returns=4) assert set(ready_ids) == set(objectids) assert remaining_ids == [] objectids = [f.remote(0.5), f.remote(0.5), f.remote(0.5), f.remote(0.5)] start_time = time.time() ready_ids, remaining_ids = ray.wait(objectids, timeout=1750, num_returns=4) assert time.time() - start_time < 2 assert len(ready_ids) == 3 assert len(remaining_ids) == 1 ray.wait(objectids) objectids = [f.remote(1.0), f.remote(0.5), f.remote(0.5), f.remote(0.5)] start_time = time.time() ready_ids, remaining_ids = ray.wait(objectids, timeout=5000) assert time.time() - start_time < 5 assert len(ready_ids) == 1 assert len(remaining_ids) == 3 # Verify that calling wait with duplicate object IDs throws an # exception. x = ray.put(1) with pytest.raises(Exception): ray.wait([x, x]) # Make sure it is possible to call wait with an empty list. ready_ids, remaining_ids = ray.wait([]) assert ready_ids == [] assert remaining_ids == [] # Test semantics of num_returns with no timeout. oids = [ray.put(i) for i in range(10)] (found, rest) = ray.wait(oids, num_returns=2) assert len(found) == 2 assert len(rest) == 8 # Verify that incorrect usage raises a TypeError. x = ray.put(1) with pytest.raises(TypeError): ray.wait(x) with pytest.raises(TypeError): ray.wait(1) with pytest.raises(TypeError): ray.wait([1]) def test_wait_iterables(shutdown_only): ray.init(num_cpus=1) @ray.remote def f(delay): time.sleep(delay) return 1 objectids = (f.remote(1.0), f.remote(0.5), f.remote(0.5), f.remote(0.5)) ready_ids, remaining_ids = ray.experimental.wait(objectids) assert len(ready_ids) == 1 assert len(remaining_ids) == 3 objectids = np.array( [f.remote(1.0), f.remote(0.5), f.remote(0.5), f.remote(0.5)]) ready_ids, remaining_ids = ray.experimental.wait(objectids) assert len(ready_ids) == 1 assert len(remaining_ids) == 3 def test_multiple_waits_and_gets(shutdown_only): # It is important to use three workers here, so that the three tasks # launched in this experiment can run at the same time. ray.init(num_cpus=3) @ray.remote def f(delay): time.sleep(delay) return 1 @ray.remote def g(l): # The argument l should be a list containing one object ID. ray.wait([l[0]]) @ray.remote def h(l): # The argument l should be a list containing one object ID. ray.get(l[0]) # Make sure that multiple wait requests involving the same object ID # all return. x = f.remote(1) ray.get([g.remote([x]), g.remote([x])]) # Make sure that multiple get requests involving the same object ID all # return. x = f.remote(1) ray.get([h.remote([x]), h.remote([x])]) def test_caching_functions_to_run(shutdown_only): # Test that we export functions to run on all workers before the driver # is connected. def f(worker_info): sys.path.append(1) ray.worker.global_worker.run_function_on_all_workers(f) def f(worker_info): sys.path.append(2) ray.worker.global_worker.run_function_on_all_workers(f) def g(worker_info): sys.path.append(3) ray.worker.global_worker.run_function_on_all_workers(g) def f(worker_info): sys.path.append(4) ray.worker.global_worker.run_function_on_all_workers(f) ray.init(num_cpus=1) @ray.remote def get_state(): time.sleep(1) return sys.path[-4], sys.path[-3], sys.path[-2], sys.path[-1] res1 = get_state.remote() res2 = get_state.remote() assert ray.get(res1) == (1, 2, 3, 4) assert ray.get(res2) == (1, 2, 3, 4) # Clean up the path on the workers. def f(worker_info): sys.path.pop() sys.path.pop() sys.path.pop() sys.path.pop() ray.worker.global_worker.run_function_on_all_workers(f) def test_running_function_on_all_workers(shutdown_only): ray.init(num_cpus=1) def f(worker_info): sys.path.append("fake_directory") ray.worker.global_worker.run_function_on_all_workers(f) @ray.remote def get_path1(): return sys.path assert "fake_directory" == ray.get(get_path1.remote())[-1] def f(worker_info): sys.path.pop(-1) ray.worker.global_worker.run_function_on_all_workers(f) # Create a second remote function to guarantee that when we call # get_path2.remote(), the second function to run will have been run on # the worker. @ray.remote def get_path2(): return sys.path assert "fake_directory" not in ray.get(get_path2.remote()) def test_profiling_api(shutdown_only): ray.init(num_cpus=2) @ray.remote def f(): with ray.profile( "custom_event", extra_data={"name": "custom name"}) as ray_prof: ray_prof.set_attribute("key", "value") ray.put(1) object_id = f.remote() ray.wait([object_id]) ray.get(object_id) # Wait until all of the profiling information appears in the profile # table. timeout_seconds = 20 start_time = time.time() while True: if time.time() - start_time > timeout_seconds: raise Exception("Timed out while waiting for information in " "profile table.") profile_data = ray.global_state.chrome_tracing_dump() event_types = {event["cat"] for event in profile_data} expected_types = [ "worker_idle", "task", "task:deserialize_arguments", "task:execute", "task:store_outputs", "wait_for_function", "ray.get", "ray.put", "ray.wait", "submit_task", "fetch_and_run_function", "register_remote_function", "custom_event", # This is the custom one from ray.profile. ] if all(expected_type in event_types for expected_type in expected_types): break @pytest.fixture() def ray_start_cluster(): cluster = ray.test.cluster_utils.Cluster() yield cluster # The code after the yield will run as teardown code. ray.shutdown() cluster.shutdown() def test_object_transfer_dump(ray_start_cluster): cluster = ray_start_cluster num_nodes = 3 for i in range(num_nodes): cluster.add_node(resources={str(i): 1}, object_store_memory=10**9) ray.init(redis_address=cluster.redis_address) @ray.remote def f(x): return # These objects will live on different nodes. object_ids = [ f._remote(args=[1], resources={str(i): 1}) for i in range(num_nodes) ] # Broadcast each object from each machine to each other machine. for object_id in object_ids: ray.get([ f._remote(args=[object_id], resources={str(i): 1}) for i in range(num_nodes) ]) # The profiling information only flushes once every second. time.sleep(1.1) transfer_dump = ray.global_state.chrome_tracing_object_transfer_dump() # Make sure the transfer dump can be serialized with JSON. json.loads(json.dumps(transfer_dump)) assert len(transfer_dump) >= num_nodes**2 assert len({ event["pid"] for event in transfer_dump if event["name"] == "transfer_receive" }) == num_nodes assert len({ event["pid"] for event in transfer_dump if event["name"] == "transfer_send" }) == num_nodes def test_identical_function_names(shutdown_only): # Define a bunch of remote functions and make sure that we don't # accidentally call an older version. ray.init(num_cpus=1) num_calls = 200 @ray.remote def f(): return 1 results1 = [f.remote() for _ in range(num_calls)] @ray.remote def f(): return 2 results2 = [f.remote() for _ in range(num_calls)] @ray.remote def f(): return 3 results3 = [f.remote() for _ in range(num_calls)] @ray.remote def f(): return 4 results4 = [f.remote() for _ in range(num_calls)] @ray.remote def f(): return 5 results5 = [f.remote() for _ in range(num_calls)] assert ray.get(results1) == num_calls * [1] assert ray.get(results2) == num_calls * [2] assert ray.get(results3) == num_calls * [3] assert ray.get(results4) == num_calls * [4] assert ray.get(results5) == num_calls * [5] @ray.remote def g(): return 1 @ray.remote # noqa: F811 def g(): return 2 @ray.remote # noqa: F811 def g(): return 3 @ray.remote # noqa: F811 def g(): return 4 @ray.remote # noqa: F811 def g(): return 5 result_values = ray.get([g.remote() for _ in range(num_calls)]) assert result_values == num_calls * [5] def test_illegal_api_calls(shutdown_only): ray.init(num_cpus=1) # Verify that we cannot call put on an ObjectID. x = ray.put(1) with pytest.raises(Exception): ray.put(x) # Verify that we cannot call get on a regular value. with pytest.raises(Exception): ray.get(3) def test_multithreading(shutdown_only): # This test requires at least 2 CPUs to finish since the worker does not # relase resources when joining the threads. ray.init(num_cpus=2) @ray.remote def f(): pass def g(n): for _ in range(1000 // n): ray.get([f.remote() for _ in range(n)]) res = [ray.put(i) for i in range(1000 // n)] ray.wait(res, len(res)) def test_multi_threading(): threads = [ threading.Thread(target=g, args=(n, )) for n in [1, 5, 10, 100, 1000] ] [thread.start() for thread in threads] [thread.join() for thread in threads] @ray.remote def test_multi_threading_in_worker(): test_multi_threading() def block(args, n): ray.wait(args, num_returns=n) ray.get(args[:n]) @ray.remote class MultithreadedActor(object): def __init__(self): pass def spawn(self): objects = [f.remote() for _ in range(1000)] self.threads = [ threading.Thread(target=block, args=(objects, n)) for n in [1, 5, 10, 100, 1000] ] [thread.start() for thread in self.threads] def join(self): [thread.join() for thread in self.threads] # test multi-threading in the driver test_multi_threading() # test multi-threading in the worker ray.get(test_multi_threading_in_worker.remote()) # test multi-threading in the actor a = MultithreadedActor.remote() ray.get(a.spawn.remote()) ray.get(a.join.remote()) def test_free_objects_multi_node(shutdown_only): # This test will do following: # 1. Create 3 raylets that each hold an actor. # 2. Each actor creates an object which is the deletion target. # 3. Invoke 64 methods on each actor to flush plasma client. # 4. After flushing, the plasma client releases the targets. # 5. Check that the deletion targets have been deleted. # Caution: if remote functions are used instead of actor methods, # one raylet may create more than one worker to execute the # tasks, so the flushing operations may be executed in different # workers and the plasma client holding the deletion target # may not be flushed. config = json.dumps({"object_manager_repeated_push_delay_ms": 1000}) ray.worker._init( start_ray_local=True, num_local_schedulers=3, num_cpus=[1, 1, 1], resources=[{ "Custom0": 1 }, { "Custom1": 1 }, { "Custom2": 1 }], _internal_config=config) @ray.remote(resources={"Custom0": 1}) class ActorOnNode0(object): def get(self): return ray.worker.global_worker.plasma_client.store_socket_name @ray.remote(resources={"Custom1": 1}) class ActorOnNode1(object): def get(self): return ray.worker.global_worker.plasma_client.store_socket_name @ray.remote(resources={"Custom2": 1}) class ActorOnNode2(object): def get(self): return ray.worker.global_worker.plasma_client.store_socket_name def create(actors): a = actors[0].get.remote() b = actors[1].get.remote() c = actors[2].get.remote() (l1, l2) = ray.wait([a, b, c], num_returns=3) assert len(l1) == 3 assert len(l2) == 0 return (a, b, c) def flush(actors): # Flush the Release History. # Current Plasma Client Cache will maintain 64-item list. # If the number changed, this will fail. logger.info("Start Flush!") for i in range(64): ray.get([actor.get.remote() for actor in actors]) logger.info("Flush finished!") def run_one_test(actors, local_only): (a, b, c) = create(actors) # The three objects should be generated on different object stores. assert ray.get(a) != ray.get(b) assert ray.get(a) != ray.get(c) assert ray.get(c) != ray.get(b) ray.internal.free([a, b, c], local_only=local_only) flush(actors) return (a, b, c) actors = [ ActorOnNode0.remote(), ActorOnNode1.remote(), ActorOnNode2.remote() ] # Case 1: run this local_only=False. All 3 objects will be deleted. (a, b, c) = run_one_test(actors, False) (l1, l2) = ray.wait([a, b, c], timeout=10, num_returns=1) # All the objects are deleted. assert len(l1) == 0 assert len(l2) == 3 # Case 2: run this local_only=True. Only 1 object will be deleted. (a, b, c) = run_one_test(actors, True) (l1, l2) = ray.wait([a, b, c], timeout=10, num_returns=3) # One object is deleted and 2 objects are not. assert len(l1) == 2 assert len(l2) == 1 # The deleted object will have the same store with the driver. local_return = ray.worker.global_worker.plasma_client.store_socket_name for object_id in l1: assert ray.get(object_id) != local_return def test_local_mode(shutdown_only): @ray.remote def local_mode_f(): return np.array([0, 0]) @ray.remote def local_mode_g(x): x[0] = 1 return x ray.init(local_mode=True) @ray.remote def f(): return np.ones([3, 4, 5]) xref = f.remote() # Remote functions should return by value. assert_equal(xref, np.ones([3, 4, 5])) # Check that ray.get is the identity. assert_equal(xref, ray.get(xref)) y = np.random.normal(size=[11, 12]) # Check that ray.put is the identity. assert_equal(y, ray.put(y)) # Make sure objects are immutable, this example is why we need to copy # arguments before passing them into remote functions in python mode aref = local_mode_f.remote() assert_equal(aref, np.array([0, 0])) bref = local_mode_g.remote(aref) # Make sure local_mode_g does not mutate aref. assert_equal(aref, np.array([0, 0])) assert_equal(bref, np.array([1, 0])) # wait should return the first num_returns values passed in as the # first list and the remaining values as the second list num_returns = 5 object_ids = [ray.put(i) for i in range(20)] ready, remaining = ray.wait( object_ids, num_returns=num_returns, timeout=None) assert_equal(ready, object_ids[:num_returns]) assert_equal(remaining, object_ids[num_returns:]) # Test actors in LOCAL_MODE. @ray.remote class LocalModeTestClass(object): def __init__(self, array): self.array = array def set_array(self, array): self.array = array def get_array(self): return self.array def modify_and_set_array(self, array): array[0] = -1 self.array = array test_actor = LocalModeTestClass.remote(np.arange(10)) # Remote actor functions should return by value assert_equal(test_actor.get_array.remote(), np.arange(10)) test_array = np.arange(10) # Remote actor functions should not mutate arguments test_actor.modify_and_set_array.remote(test_array) assert_equal(test_array, np.arange(10)) # Remote actor functions should keep state test_array[0] = -1 assert_equal(test_array, test_actor.get_array.remote()) # Check that actor handles work in Python mode. @ray.remote def use_actor_handle(handle): array = np.ones(10) handle.set_array.remote(array) assert np.alltrue(array == ray.get(handle.get_array.remote())) ray.get(use_actor_handle.remote(test_actor)) def test_resource_constraints(shutdown_only): num_workers = 20 ray.init(num_cpus=10, num_gpus=2) @ray.remote(num_cpus=0) def get_worker_id(): time.sleep(0.1) return os.getpid() # Attempt to wait for all of the workers to start up. while True: if len( set( ray.get([ get_worker_id.remote() for _ in range(num_workers) ]))) == num_workers: break time_buffer = 0.3 # At most 10 copies of this can run at once. @ray.remote(num_cpus=1) def f(n): time.sleep(n) start_time = time.time() ray.get([f.remote(0.5) for _ in range(10)]) duration = time.time() - start_time assert duration < 0.5 + time_buffer assert duration > 0.5 start_time = time.time() ray.get([f.remote(0.5) for _ in range(11)]) duration = time.time() - start_time assert duration < 1 + time_buffer assert duration > 1 @ray.remote(num_cpus=3) def f(n): time.sleep(n) start_time = time.time() ray.get([f.remote(0.5) for _ in range(3)]) duration = time.time() - start_time assert duration < 0.5 + time_buffer assert duration > 0.5 start_time = time.time() ray.get([f.remote(0.5) for _ in range(4)]) duration = time.time() - start_time assert duration < 1 + time_buffer assert duration > 1 @ray.remote(num_gpus=1) def f(n): time.sleep(n) start_time = time.time() ray.get([f.remote(0.5) for _ in range(2)]) duration = time.time() - start_time assert duration < 0.5 + time_buffer assert duration > 0.5 start_time = time.time() ray.get([f.remote(0.5) for _ in range(3)]) duration = time.time() - start_time assert duration < 1 + time_buffer assert duration > 1 start_time = time.time() ray.get([f.remote(0.5) for _ in range(4)]) duration = time.time() - start_time assert duration < 1 + time_buffer assert duration > 1 def test_multi_resource_constraints(shutdown_only): num_workers = 20 ray.init(num_cpus=10, num_gpus=10) @ray.remote(num_cpus=0) def get_worker_id(): time.sleep(0.1) return os.getpid() # Attempt to wait for all of the workers to start up. while True: if len( set( ray.get([ get_worker_id.remote() for _ in range(num_workers) ]))) == num_workers: break @ray.remote(num_cpus=1, num_gpus=9) def f(n): time.sleep(n) @ray.remote(num_cpus=9, num_gpus=1) def g(n): time.sleep(n) time_buffer = 0.3 start_time = time.time() ray.get([f.remote(0.5), g.remote(0.5)]) duration = time.time() - start_time assert duration < 0.5 + time_buffer assert duration > 0.5 start_time = time.time() ray.get([f.remote(0.5), f.remote(0.5)]) duration = time.time() - start_time assert duration < 1 + time_buffer assert duration > 1 start_time = time.time() ray.get([g.remote(0.5), g.remote(0.5)]) duration = time.time() - start_time assert duration < 1 + time_buffer assert duration > 1 start_time = time.time() ray.get([f.remote(0.5), f.remote(0.5), g.remote(0.5), g.remote(0.5)]) duration = time.time() - start_time assert duration < 1 + time_buffer assert duration > 1 def test_gpu_ids(shutdown_only): num_gpus = 10 ray.init(num_cpus=10, num_gpus=num_gpus) @ray.remote(num_gpus=0) def f0(): time.sleep(0.1) gpu_ids = ray.get_gpu_ids() assert len(gpu_ids) == 0 assert (os.environ["CUDA_VISIBLE_DEVICES"] == ",".join( [str(i) for i in gpu_ids])) for gpu_id in gpu_ids: assert gpu_id in range(num_gpus) return gpu_ids @ray.remote(num_gpus=1) def f1(): time.sleep(0.1) gpu_ids = ray.get_gpu_ids() assert len(gpu_ids) == 1 assert (os.environ["CUDA_VISIBLE_DEVICES"] == ",".join( [str(i) for i in gpu_ids])) for gpu_id in gpu_ids: assert gpu_id in range(num_gpus) return gpu_ids @ray.remote(num_gpus=2) def f2(): time.sleep(0.1) gpu_ids = ray.get_gpu_ids() assert len(gpu_ids) == 2 assert (os.environ["CUDA_VISIBLE_DEVICES"] == ",".join( [str(i) for i in gpu_ids])) for gpu_id in gpu_ids: assert gpu_id in range(num_gpus) return gpu_ids @ray.remote(num_gpus=3) def f3(): time.sleep(0.1) gpu_ids = ray.get_gpu_ids() assert len(gpu_ids) == 3 assert (os.environ["CUDA_VISIBLE_DEVICES"] == ",".join( [str(i) for i in gpu_ids])) for gpu_id in gpu_ids: assert gpu_id in range(num_gpus) return gpu_ids @ray.remote(num_gpus=4) def f4(): time.sleep(0.1) gpu_ids = ray.get_gpu_ids() assert len(gpu_ids) == 4 assert (os.environ["CUDA_VISIBLE_DEVICES"] == ",".join( [str(i) for i in gpu_ids])) for gpu_id in gpu_ids: assert gpu_id in range(num_gpus) return gpu_ids @ray.remote(num_gpus=5) def f5(): time.sleep(0.1) gpu_ids = ray.get_gpu_ids() assert len(gpu_ids) == 5 assert (os.environ["CUDA_VISIBLE_DEVICES"] == ",".join( [str(i) for i in gpu_ids])) for gpu_id in gpu_ids: assert gpu_id in range(num_gpus) return gpu_ids # Wait for all workers to start up. @ray.remote def f(): time.sleep(0.1) return os.getpid() start_time = time.time() while True: if len(set(ray.get([f.remote() for _ in range(10)]))) == 10: break if time.time() > start_time + 10: raise Exception("Timed out while waiting for workers to start " "up.") list_of_ids = ray.get([f0.remote() for _ in range(10)]) assert list_of_ids == 10 * [[]] list_of_ids = ray.get([f1.remote() for _ in range(10)]) set_of_ids = {tuple(gpu_ids) for gpu_ids in list_of_ids} assert set_of_ids == {(i, ) for i in range(10)} list_of_ids = ray.get([f2.remote(), f4.remote(), f4.remote()]) all_ids = [gpu_id for gpu_ids in list_of_ids for gpu_id in gpu_ids] assert set(all_ids) == set(range(10)) remaining = [f5.remote() for _ in range(20)] for _ in range(10): t1 = time.time() ready, remaining = ray.wait(remaining, num_returns=2) t2 = time.time() # There are only 10 GPUs, and each task uses 2 GPUs, so there # should only be 2 tasks scheduled at a given time, so if we wait # for 2 tasks to finish, then it should take at least 0.1 seconds # for each pair of tasks to finish. assert t2 - t1 > 0.09 list_of_ids = ray.get(ready) all_ids = [gpu_id for gpu_ids in list_of_ids for gpu_id in gpu_ids] # Commenting out the below assert because it seems to fail a lot. # assert set(all_ids) == set(range(10)) # Test that actors have CUDA_VISIBLE_DEVICES set properly. @ray.remote class Actor0(object): def __init__(self): gpu_ids = ray.get_gpu_ids() assert len(gpu_ids) == 0 assert (os.environ["CUDA_VISIBLE_DEVICES"] == ",".join( [str(i) for i in gpu_ids])) # Set self.x to make sure that we got here. self.x = 1 def test(self): gpu_ids = ray.get_gpu_ids() assert len(gpu_ids) == 0 assert (os.environ["CUDA_VISIBLE_DEVICES"] == ",".join( [str(i) for i in gpu_ids])) return self.x @ray.remote(num_gpus=1) class Actor1(object): def __init__(self): gpu_ids = ray.get_gpu_ids() assert len(gpu_ids) == 1 assert (os.environ["CUDA_VISIBLE_DEVICES"] == ",".join( [str(i) for i in gpu_ids])) # Set self.x to make sure that we got here. self.x = 1 def test(self): gpu_ids = ray.get_gpu_ids() assert len(gpu_ids) == 1 assert (os.environ["CUDA_VISIBLE_DEVICES"] == ",".join( [str(i) for i in gpu_ids])) return self.x a0 = Actor0.remote() ray.get(a0.test.remote()) a1 = Actor1.remote() ray.get(a1.test.remote()) def test_zero_cpus(shutdown_only): ray.init(num_cpus=0) @ray.remote(num_cpus=0) def f(): return 1 # The task should be able to execute. ray.get(f.remote()) def test_zero_cpus_actor(shutdown_only): ray.worker._init( start_ray_local=True, num_local_schedulers=2, num_cpus=[0, 2]) local_plasma = ray.worker.global_worker.plasma_client.store_socket_name @ray.remote class Foo(object): def method(self): return ray.worker.global_worker.plasma_client.store_socket_name # Make sure tasks and actors run on the remote local scheduler. a = Foo.remote() assert ray.get(a.method.remote()) != local_plasma def test_fractional_resources(shutdown_only): ray.init(num_cpus=6, num_gpus=3, resources={"Custom": 1}) @ray.remote(num_gpus=0.5) class Foo1(object): def method(self): gpu_ids = ray.get_gpu_ids() assert len(gpu_ids) == 1 return gpu_ids[0] foos = [Foo1.remote() for _ in range(6)] gpu_ids = ray.get([f.method.remote() for f in foos]) for i in range(3): assert gpu_ids.count(i) == 2 del foos @ray.remote class Foo2(object): def method(self): pass # Create an actor that requires 0.7 of the custom resource. f1 = Foo2._remote([], {}, resources={"Custom": 0.7}) ray.get(f1.method.remote()) # Make sure that we cannot create an actor that requires 0.7 of the # custom resource. TODO(rkn): Re-enable this once ray.wait is # implemented. f2 = Foo2._remote([], {}, resources={"Custom": 0.7}) ready, _ = ray.wait([f2.method.remote()], timeout=500) assert len(ready) == 0 # Make sure we can start an actor that requries only 0.3 of the custom # resource. f3 = Foo2._remote([], {}, resources={"Custom": 0.3}) ray.get(f3.method.remote()) del f1, f3 # Make sure that we get exceptions if we submit tasks that require a # fractional number of resources greater than 1. @ray.remote(num_cpus=1.5) def test(): pass with pytest.raises(ValueError): test.remote() with pytest.raises(ValueError): Foo2._remote([], {}, resources={"Custom": 1.5}) def test_multiple_local_schedulers(shutdown_only): # This test will define a bunch of tasks that can only be assigned to # specific local schedulers, and we will check that they are assigned # to the correct local schedulers. address_info = ray.worker._init( start_ray_local=True, num_local_schedulers=3, num_cpus=[11, 5, 10], num_gpus=[0, 5, 1]) # Define a bunch of remote functions that all return the socket name of # the plasma store. Since there is a one-to-one correspondence between # plasma stores and local schedulers (at least right now), this can be # used to identify which local scheduler the task was assigned to. # This must be run on the zeroth local scheduler. @ray.remote(num_cpus=11) def run_on_0(): return ray.worker.global_worker.plasma_client.store_socket_name # This must be run on the first local scheduler. @ray.remote(num_gpus=2) def run_on_1(): return ray.worker.global_worker.plasma_client.store_socket_name # This must be run on the second local scheduler. @ray.remote(num_cpus=6, num_gpus=1) def run_on_2(): return ray.worker.global_worker.plasma_client.store_socket_name # This can be run anywhere. @ray.remote(num_cpus=0, num_gpus=0) def run_on_0_1_2(): return ray.worker.global_worker.plasma_client.store_socket_name # This must be run on the first or second local scheduler. @ray.remote(num_gpus=1) def run_on_1_2(): return ray.worker.global_worker.plasma_client.store_socket_name # This must be run on the zeroth or second local scheduler. @ray.remote(num_cpus=8) def run_on_0_2(): return ray.worker.global_worker.plasma_client.store_socket_name def run_lots_of_tasks(): names = [] results = [] for i in range(100): index = np.random.randint(6) if index == 0: names.append("run_on_0") results.append(run_on_0.remote()) elif index == 1: names.append("run_on_1") results.append(run_on_1.remote()) elif index == 2: names.append("run_on_2") results.append(run_on_2.remote()) elif index == 3: names.append("run_on_0_1_2") results.append(run_on_0_1_2.remote()) elif index == 4: names.append("run_on_1_2") results.append(run_on_1_2.remote()) elif index == 5: names.append("run_on_0_2") results.append(run_on_0_2.remote()) return names, results store_names = address_info["object_store_addresses"] def validate_names_and_results(names, results): for name, result in zip(names, ray.get(results)): if name == "run_on_0": assert result in [store_names[0]] elif name == "run_on_1": assert result in [store_names[1]] elif name == "run_on_2": assert result in [store_names[2]] elif name == "run_on_0_1_2": assert (result in [ store_names[0], store_names[1], store_names[2] ]) elif name == "run_on_1_2": assert result in [store_names[1], store_names[2]] elif name == "run_on_0_2": assert result in [store_names[0], store_names[2]] else: raise Exception("This should be unreachable.") assert set(ray.get(results)) == set(store_names) names, results = run_lots_of_tasks() validate_names_and_results(names, results) # Make sure the same thing works when this is nested inside of a task. @ray.remote def run_nested1(): names, results = run_lots_of_tasks() return names, results @ray.remote def run_nested2(): names, results = ray.get(run_nested1.remote()) return names, results names, results = ray.get(run_nested2.remote()) validate_names_and_results(names, results) def test_custom_resources(shutdown_only): ray.worker._init( start_ray_local=True, num_local_schedulers=2, num_cpus=[3, 3], resources=[{ "CustomResource": 0 }, { "CustomResource": 1 }]) @ray.remote def f(): time.sleep(0.001) return ray.worker.global_worker.plasma_client.store_socket_name @ray.remote(resources={"CustomResource": 1}) def g(): time.sleep(0.001) return ray.worker.global_worker.plasma_client.store_socket_name @ray.remote(resources={"CustomResource": 1}) def h(): ray.get([f.remote() for _ in range(5)]) return ray.worker.global_worker.plasma_client.store_socket_name # The f tasks should be scheduled on both local schedulers. assert len(set(ray.get([f.remote() for _ in range(50)]))) == 2 local_plasma = ray.worker.global_worker.plasma_client.store_socket_name # The g tasks should be scheduled only on the second local scheduler. local_scheduler_ids = set(ray.get([g.remote() for _ in range(50)])) assert len(local_scheduler_ids) == 1 assert list(local_scheduler_ids)[0] != local_plasma # Make sure that resource bookkeeping works when a task that uses a # custom resources gets blocked. ray.get([h.remote() for _ in range(5)]) def test_two_custom_resources(shutdown_only): ray.worker._init( start_ray_local=True, num_local_schedulers=2, num_cpus=[3, 3], resources=[{ "CustomResource1": 1, "CustomResource2": 2 }, { "CustomResource1": 3, "CustomResource2": 4 }]) @ray.remote(resources={"CustomResource1": 1}) def f(): time.sleep(0.001) return ray.worker.global_worker.plasma_client.store_socket_name @ray.remote(resources={"CustomResource2": 1}) def g(): time.sleep(0.001) return ray.worker.global_worker.plasma_client.store_socket_name @ray.remote(resources={"CustomResource1": 1, "CustomResource2": 3}) def h(): time.sleep(0.001) return ray.worker.global_worker.plasma_client.store_socket_name @ray.remote(resources={"CustomResource1": 4}) def j(): time.sleep(0.001) return ray.worker.global_worker.plasma_client.store_socket_name @ray.remote(resources={"CustomResource3": 1}) def k(): time.sleep(0.001) return ray.worker.global_worker.plasma_client.store_socket_name # The f and g tasks should be scheduled on both local schedulers. assert len(set(ray.get([f.remote() for _ in range(50)]))) == 2 assert len(set(ray.get([g.remote() for _ in range(50)]))) == 2 local_plasma = ray.worker.global_worker.plasma_client.store_socket_name # The h tasks should be scheduled only on the second local scheduler. local_scheduler_ids = set(ray.get([h.remote() for _ in range(50)])) assert len(local_scheduler_ids) == 1 assert list(local_scheduler_ids)[0] != local_plasma # Make sure that tasks with unsatisfied custom resource requirements do # not get scheduled. ready_ids, remaining_ids = ray.wait([j.remote(), k.remote()], timeout=500) assert ready_ids == [] def test_many_custom_resources(shutdown_only): num_custom_resources = 10000 total_resources = { str(i): np.random.randint(1, 7) for i in range(num_custom_resources) } ray.init(num_cpus=5, resources=total_resources) def f(): return 1 remote_functions = [] for _ in range(20): num_resources = np.random.randint(0, num_custom_resources + 1) permuted_resources = np.random.permutation( num_custom_resources)[:num_resources] random_resources = { str(i): total_resources[str(i)] for i in permuted_resources } remote_function = ray.remote(resources=random_resources)(f) remote_functions.append(remote_function) remote_functions.append(ray.remote(f)) remote_functions.append(ray.remote(resources=total_resources)(f)) results = [] for remote_function in remote_functions: results.append(remote_function.remote()) results.append(remote_function.remote()) results.append(remote_function.remote()) ray.get(results) @pytest.fixture def save_gpu_ids_shutdown_only(): # Record the curent value of this environment variable so that we can # reset it after the test. original_gpu_ids = os.environ.get("CUDA_VISIBLE_DEVICES", None) yield None # The code after the yield will run as teardown code. ray.shutdown() # Reset the environment variable. if original_gpu_ids is not None: os.environ["CUDA_VISIBLE_DEVICES"] = original_gpu_ids else: del os.environ["CUDA_VISIBLE_DEVICES"] def test_specific_gpus(save_gpu_ids_shutdown_only): allowed_gpu_ids = [4, 5, 6] os.environ["CUDA_VISIBLE_DEVICES"] = ",".join( [str(i) for i in allowed_gpu_ids]) ray.init(num_gpus=3) @ray.remote(num_gpus=1) def f(): gpu_ids = ray.get_gpu_ids() assert len(gpu_ids) == 1 assert gpu_ids[0] in allowed_gpu_ids @ray.remote(num_gpus=2) def g(): gpu_ids = ray.get_gpu_ids() assert len(gpu_ids) == 2 assert gpu_ids[0] in allowed_gpu_ids assert gpu_ids[1] in allowed_gpu_ids ray.get([f.remote() for _ in range(100)]) ray.get([g.remote() for _ in range(100)]) def test_blocking_tasks(shutdown_only): ray.init(num_cpus=1) @ray.remote def f(i, j): return (i, j) @ray.remote def g(i): # Each instance of g submits and blocks on the result of another # remote task. object_ids = [f.remote(i, j) for j in range(2)] return ray.get(object_ids) @ray.remote def h(i): # Each instance of g submits and blocks on the result of another # remote task using ray.wait. object_ids = [f.remote(i, j) for j in range(2)] return ray.wait(object_ids, num_returns=len(object_ids)) ray.get([h.remote(i) for i in range(4)]) @ray.remote def _sleep(i): time.sleep(0.01) return (i) @ray.remote def sleep(): # Each instance of sleep submits and blocks on the result of # another remote task, which takes some time to execute. ray.get([_sleep.remote(i) for i in range(10)]) ray.get(sleep.remote()) def test_max_call_tasks(shutdown_only): ray.init(num_cpus=1) @ray.remote(max_calls=1) def f(): return os.getpid() pid = ray.get(f.remote()) ray.test.test_utils.wait_for_pid_to_exit(pid) @ray.remote(max_calls=2) def f(): return os.getpid() pid1 = ray.get(f.remote()) pid2 = ray.get(f.remote()) assert pid1 == pid2 ray.test.test_utils.wait_for_pid_to_exit(pid1) def attempt_to_load_balance(remote_function, args, total_tasks, num_local_schedulers, minimum_count, num_attempts=100): attempts = 0 while attempts < num_attempts: locations = ray.get( [remote_function.remote(*args) for _ in range(total_tasks)]) names = set(locations) counts = [locations.count(name) for name in names] logger.info("Counts are {}.".format(counts)) if (len(names) == num_local_schedulers and all(count >= minimum_count for count in counts)): break attempts += 1 assert attempts < num_attempts def test_load_balancing(shutdown_only): # This test ensures that tasks are being assigned to all local # schedulers in a roughly equal manner. num_local_schedulers = 3 num_cpus = 7 ray.worker._init( start_ray_local=True, num_local_schedulers=num_local_schedulers, num_cpus=num_cpus) @ray.remote def f(): time.sleep(0.01) return ray.worker.global_worker.plasma_client.store_socket_name attempt_to_load_balance(f, [], 100, num_local_schedulers, 10) attempt_to_load_balance(f, [], 1000, num_local_schedulers, 100) def test_load_balancing_with_dependencies(shutdown_only): # This test ensures that tasks are being assigned to all local # schedulers in a roughly equal manner even when the tasks have # dependencies. num_local_schedulers = 3 ray.worker._init( start_ray_local=True, num_local_schedulers=num_local_schedulers, num_cpus=1) @ray.remote def f(x): time.sleep(0.010) return ray.worker.global_worker.plasma_client.store_socket_name # This object will be local to one of the local schedulers. Make sure # this doesn't prevent tasks from being scheduled on other local # schedulers. x = ray.put(np.zeros(1000000)) attempt_to_load_balance(f, [x], 100, num_local_schedulers, 25) def wait_for_num_tasks(num_tasks, timeout=10): start_time = time.time() while time.time() - start_time < timeout: if len(ray.global_state.task_table()) >= num_tasks: return time.sleep(0.1) raise Exception("Timed out while waiting for global state.") def wait_for_num_objects(num_objects, timeout=10): start_time = time.time() while time.time() - start_time < timeout: if len(ray.global_state.object_table()) >= num_objects: return time.sleep(0.1) raise Exception("Timed out while waiting for global state.") @pytest.mark.skipif( os.environ.get("RAY_USE_NEW_GCS") == "on", reason="New GCS API doesn't have a Python API yet.") def test_global_state_api(shutdown_only): with pytest.raises(Exception): ray.global_state.object_table() with pytest.raises(Exception): ray.global_state.task_table() with pytest.raises(Exception): ray.global_state.client_table() with pytest.raises(Exception): ray.global_state.function_table() with pytest.raises(Exception): ray.global_state.log_files() ray.init(num_cpus=5, num_gpus=3, resources={"CustomResource": 1}) resources = {"CPU": 5, "GPU": 3, "CustomResource": 1} assert ray.global_state.cluster_resources() == resources assert ray.global_state.object_table() == {} driver_id = ray.experimental.state.binary_to_hex( ray.worker.global_worker.worker_id) driver_task_id = ray.experimental.state.binary_to_hex( ray.worker.global_worker.current_task_id.id()) # One task is put in the task table which corresponds to this driver. wait_for_num_tasks(1) task_table = ray.global_state.task_table() assert len(task_table) == 1 assert driver_task_id == list(task_table.keys())[0] task_spec = task_table[driver_task_id]["TaskSpec"] assert task_spec["TaskID"] == driver_task_id assert task_spec["ActorID"] == ray_constants.ID_SIZE * "ff" assert task_spec["Args"] == [] assert task_spec["DriverID"] == driver_id assert task_spec["FunctionID"] == ray_constants.ID_SIZE * "ff" assert task_spec["ReturnObjectIDs"] == [] client_table = ray.global_state.client_table() node_ip_address = ray.worker.global_worker.node_ip_address assert len(client_table) == 1 assert client_table[0]["NodeManagerAddress"] == node_ip_address @ray.remote def f(*xs): return 1 x_id = ray.put(1) result_id = f.remote(1, "hi", x_id) # Wait for one additional task to complete. wait_for_num_tasks(1 + 1) task_table = ray.global_state.task_table() assert len(task_table) == 1 + 1 task_id_set = set(task_table.keys()) task_id_set.remove(driver_task_id) task_id = list(task_id_set)[0] function_table = ray.global_state.function_table() task_spec = task_table[task_id]["TaskSpec"] assert task_spec["ActorID"] == ray_constants.ID_SIZE * "ff" assert task_spec["Args"] == [1, "hi", x_id] assert task_spec["DriverID"] == driver_id assert task_spec["ReturnObjectIDs"] == [result_id] function_table_entry = function_table[task_spec["FunctionID"]] assert function_table_entry["Name"] == "runtest.f" assert function_table_entry["DriverID"] == driver_id assert function_table_entry["Module"] == "runtest" assert task_table[task_id] == ray.global_state.task_table(task_id) # Wait for two objects, one for the x_id and one for result_id. wait_for_num_objects(2) def wait_for_object_table(): timeout = 10 start_time = time.time() while time.time() - start_time < timeout: object_table = ray.global_state.object_table() tables_ready = (object_table[x_id]["ManagerIDs"] is not None and object_table[result_id]["ManagerIDs"] is not None) if tables_ready: return time.sleep(0.1) raise Exception("Timed out while waiting for object table to " "update.") object_table = ray.global_state.object_table() assert len(object_table) == 2 assert object_table[x_id]["IsEviction"][0] is False assert object_table[result_id]["IsEviction"][0] is False assert object_table[x_id] == ray.global_state.object_table(x_id) object_table_entry = ray.global_state.object_table(result_id) assert object_table[result_id] == object_table_entry @pytest.mark.skipif( os.environ.get("RAY_USE_NEW_GCS") == "on", reason="New GCS API doesn't have a Python API yet.") def test_log_file_api(shutdown_only): ray.init(num_cpus=1, redirect_worker_output=True) message = "unique message" @ray.remote def f(): logger.info(message) # The call to sys.stdout.flush() seems to be necessary when using # the system Python 2.7 on Ubuntu. sys.stdout.flush() ray.get(f.remote()) # Make sure that the message appears in the log files. start_time = time.time() found_message = False while time.time() - start_time < 10: log_files = ray.global_state.log_files() for ip, innerdict in log_files.items(): for filename, contents in innerdict.items(): contents_str = "".join(contents) if message in contents_str: found_message = True if found_message: break time.sleep(0.1) assert found_message is True @pytest.mark.skipif( os.environ.get("RAY_USE_NEW_GCS") == "on", reason="New GCS API doesn't have a Python API yet.") def test_workers(shutdown_only): num_workers = 3 ray.init(redirect_worker_output=True, num_cpus=num_workers) @ray.remote def f(): return id(ray.worker.global_worker), os.getpid() # Wait until all of the workers have started. worker_ids = set() while len(worker_ids) != num_workers: worker_ids = set(ray.get([f.remote() for _ in range(10)])) worker_info = ray.global_state.workers() assert len(worker_info) >= num_workers for worker_id, info in worker_info.items(): assert "node_ip_address" in info assert "plasma_store_socket" in info assert "stderr_file" in info assert "stdout_file" in info def test_specific_driver_id(): dummy_driver_id = ray.ObjectID(b"00112233445566778899") ray.init(driver_id=dummy_driver_id) @ray.remote def f(): return ray.worker.global_worker.task_driver_id.id() assert_equal(dummy_driver_id.id(), ray.worker.global_worker.worker_id) task_driver_id = ray.get(f.remote()) assert_equal(dummy_driver_id.id(), task_driver_id) ray.shutdown() @pytest.fixture def shutdown_only_with_initialization_check(): yield None # The code after the yield will run as teardown code. ray.shutdown() assert not ray.is_initialized() def test_initialized(shutdown_only_with_initialization_check): assert not ray.is_initialized() ray.init(num_cpus=0) assert ray.is_initialized() def test_initialized_local_mode(shutdown_only_with_initialization_check): assert not ray.is_initialized() ray.init(num_cpus=0, local_mode=True) assert ray.is_initialized() def test_wait_reconstruction(shutdown_only): ray.init(num_cpus=1, object_store_memory=10**8) @ray.remote def f(): return np.zeros(6 * 10**7, dtype=np.uint8) x_id = f.remote() ray.wait([x_id]) ray.wait([f.remote()]) assert not ray.worker.global_worker.plasma_client.contains( ray.pyarrow.plasma.ObjectID(x_id.id())) ready_ids, _ = ray.wait([x_id]) assert len(ready_ids) == 1 def test_ray_setproctitle(shutdown_only): ray.init(num_cpus=2) @ray.remote class UniqueName(object): def __init__(self): assert setproctitle.getproctitle() == "ray_UniqueName:__init__()" def f(self): assert setproctitle.getproctitle() == "ray_UniqueName:f()" @ray.remote def unique_1(): assert setproctitle.getproctitle() == "ray_worker:runtest.unique_1()" actor = UniqueName.remote() ray.get(actor.f.remote()) ray.get(unique_1.remote()) def test_duplicate_error_messages(shutdown_only): ray.init(num_cpus=0) driver_id = ray.ray_constants.NIL_JOB_ID.id() error_data = ray.gcs_utils.construct_error_message(driver_id, "test", "message", 0) # Push the same message to the GCS twice (they are the same because we # do not include a timestamp). r = ray.worker.global_worker.redis_client r.execute_command("RAY.TABLE_APPEND", ray.gcs_utils.TablePrefix.ERROR_INFO, ray.gcs_utils.TablePubsub.ERROR_INFO, driver_id, error_data) # Before https://github.com/ray-project/ray/pull/3316 this would # give an error r.execute_command("RAY.TABLE_APPEND", ray.gcs_utils.TablePrefix.ERROR_INFO, ray.gcs_utils.TablePubsub.ERROR_INFO, driver_id, error_data) @pytest.mark.skipif( os.getenv("TRAVIS") is None, reason="This test should only be run on Travis.") def test_ray_stack(shutdown_only): ray.init(num_cpus=2) def unique_name_1(): time.sleep(1000) @ray.remote def unique_name_2(): time.sleep(1000) @ray.remote def unique_name_3(): unique_name_1() unique_name_2.remote() unique_name_3.remote() success = False start_time = time.time() while time.time() - start_time < 30: # Attempt to parse the "ray stack" call. output = ray.utils.decode(subprocess.check_output(["ray", "stack"])) if ("unique_name_1" in output and "unique_name_2" in output and "unique_name_3" in output): success = True break if not success: raise Exception("Failed to find necessary information with " "'ray stack'")