cluster_name: object-store-benchmarks min_workers: 0 max_workers: 999999 upscaling_speed: 9999999 provider: type: aws region: us-west-2 availability_zone: us-west-2a auth: ssh_user: ubuntu available_node_types: head_node: node_config: InstanceType: m4.4xlarge ImageId: ami-098555c9b343eb09c resources: node: 1 max_workers: 999999 worker_node: node_config: InstanceType: m4.xlarge ImageId: ami-098555c9b343eb09c resources: node: 1 max_workers: 999999 head_node_type: head_node worker_default_node_type: worker_node setup_commands: - pip install -U https://s3-us-west-2.amazonaws.com/ray-wheels/releases/1.4.0/6ac5e0e5ad45070e27c77aca7267bcee30cc4b4a/ray-1.4.0-cp37-cp37m-manylinux2014_x86_64.whl - pip install tqdm numpy idle_timeout_minutes: 5 head_start_ray_commands: - ray stop - ulimit -n 1000000; ray start --head --port=6379 --object-manager-port=8076 --autoscaling-config=~/ray_bootstrap_config.yaml # Command to start ray on worker nodes. You don't need to change this. worker_start_ray_commands: - ray stop - ulimit -n 1000000; ray start --address=$RAY_HEAD_IP:6379 --object-manager-port=8076