from ray.rllib.models.tf.tf_modelv2 import TFModelV2 from ray.rllib.models.tf.visionnet_v1 import _get_filter_config from ray.rllib.models.tf.misc import normc_initializer from ray.rllib.utils.framework import get_activation_fn, try_import_tf tf = try_import_tf() class VisionNetwork(TFModelV2): """Generic vision network implemented in ModelV2 API.""" def __init__(self, obs_space, action_space, num_outputs, model_config, name): super(VisionNetwork, self).__init__(obs_space, action_space, num_outputs, model_config, name) activation = get_activation_fn(model_config.get("conv_activation")) filters = model_config.get("conv_filters") if not filters: filters = _get_filter_config(obs_space.shape) no_final_linear = model_config.get("no_final_linear") vf_share_layers = model_config.get("vf_share_layers") inputs = tf.keras.layers.Input( shape=obs_space.shape, name="observations") last_layer = inputs # Build the action layers for i, (out_size, kernel, stride) in enumerate(filters[:-1], 1): last_layer = tf.keras.layers.Conv2D( out_size, kernel, strides=(stride, stride), activation=activation, padding="same", data_format="channels_last", name="conv{}".format(i))(last_layer) out_size, kernel, stride = filters[-1] # No final linear: Last layer is a Conv2D and uses num_outputs. if no_final_linear: last_layer = tf.keras.layers.Conv2D( num_outputs, kernel, strides=(stride, stride), activation=activation, padding="valid", data_format="channels_last", name="conv_out")(last_layer) conv_out = last_layer # Finish network normally (w/o overriding last layer size with # `num_outputs`), then add another linear one of size `num_outputs`. else: last_layer = tf.keras.layers.Conv2D( out_size, kernel, strides=(stride, stride), activation=activation, padding="valid", data_format="channels_last", name="conv{}".format(i + 1))(last_layer) conv_out = tf.keras.layers.Conv2D( num_outputs, [1, 1], activation=None, padding="same", data_format="channels_last", name="conv_out")(last_layer) # Build the value layers if vf_share_layers: last_layer = tf.keras.layers.Lambda( lambda x: tf.squeeze(x, axis=[1, 2]))(last_layer) value_out = tf.keras.layers.Dense( 1, name="value_out", activation=None, kernel_initializer=normc_initializer(0.01))(last_layer) else: # build a parallel set of hidden layers for the value net last_layer = inputs for i, (out_size, kernel, stride) in enumerate(filters[:-1], 1): last_layer = tf.keras.layers.Conv2D( out_size, kernel, strides=(stride, stride), activation=activation, padding="same", data_format="channels_last", name="conv_value_{}".format(i))(last_layer) out_size, kernel, stride = filters[-1] last_layer = tf.keras.layers.Conv2D( out_size, kernel, strides=(stride, stride), activation=activation, padding="valid", data_format="channels_last", name="conv_value_{}".format(i + 1))(last_layer) last_layer = tf.keras.layers.Conv2D( 1, [1, 1], activation=None, padding="same", data_format="channels_last", name="conv_value_out")(last_layer) value_out = tf.keras.layers.Lambda( lambda x: tf.squeeze(x, axis=[1, 2]))(last_layer) self.base_model = tf.keras.Model(inputs, [conv_out, value_out]) self.register_variables(self.base_model.variables) def forward(self, input_dict, state, seq_lens): # explicit cast to float32 needed in eager model_out, self._value_out = self.base_model( tf.cast(input_dict["obs"], tf.float32)) return tf.squeeze(model_out, axis=[1, 2]), state def value_function(self): return tf.reshape(self._value_out, [-1])