import time import subprocess from subprocess import PIPE import requests import ray from ray import serve from ray.cluster_utils import Cluster num_redis_shards = 1 redis_max_memory = 10**8 object_store_memory = 10**8 num_nodes = 4 cluster = Cluster() for i in range(num_nodes): cluster.add_node( redis_port=6379 if i == 0 else None, num_redis_shards=num_redis_shards if i == 0 else None, num_cpus=8, num_gpus=0, resources={str(i): 2}, object_store_memory=object_store_memory, redis_max_memory=redis_max_memory, dashboard_host="0.0.0.0", ) ray.init(address=cluster.address, dashboard_host="0.0.0.0") client = serve.start() @serve.accept_batch def echo(requests_batch): time.sleep(0.01) # Sleep for 10ms return ["hi" for _ in range(len(requests_batch))] config = {"num_replicas": 7, "max_batch_size": 16} client.create_backend("echo:v1", echo, config=config) client.create_endpoint("echo", backend="echo:v1", route="/echo") print("Warming up") for _ in range(5): resp = requests.get("http://127.0.0.1:8000/echo").text print(resp) time.sleep(0.5) connections = int(config["num_replicas"] * config["max_batch_size"] * 0.75) num_threads = 2 time_to_run = "60m" while True: proc = subprocess.Popen( [ "wrk", "-c", str(connections), "-t", str(num_threads), "-d", time_to_run, "http://127.0.0.1:8000/echo", ], stdout=PIPE, stderr=PIPE, ) print("started load testing") proc.wait() out, err = proc.communicate() print(out.decode()) print(err.decode())