# Most of the tensorflow code is adapted from Tensorflow's tutorial on using # CNNs to train MNIST # https://www.tensorflow.org/versions/r0.9/tutorials/mnist/pros/index.html#build-a-multilayer-convolutional-network. # noqa: E501 from __future__ import absolute_import from __future__ import division from __future__ import print_function import ray import tensorflow as tf def get_batch(data, batch_index, batch_size): # This method currently drops data when num_data is not divisible by # batch_size. num_data = data.shape[0] num_batches = num_data // batch_size batch_index %= num_batches return data[(batch_index * batch_size):((batch_index + 1) * batch_size)] def weight(shape, stddev): initial = tf.truncated_normal(shape, stddev=stddev) return tf.Variable(initial) def bias(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding="SAME") def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME") def cnn_setup(x, y, keep_prob, lr, stddev): first_hidden = 32 second_hidden = 64 fc_hidden = 1024 W_conv1 = weight([5, 5, 1, first_hidden], stddev) B_conv1 = bias([first_hidden]) x_image = tf.reshape(x, [-1, 28, 28, 1]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + B_conv1) h_pool1 = max_pool_2x2(h_conv1) W_conv2 = weight([5, 5, first_hidden, second_hidden], stddev) b_conv2 = bias([second_hidden]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) W_fc1 = weight([7 * 7 * second_hidden, fc_hidden], stddev) b_fc1 = bias([fc_hidden]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * second_hidden]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) W_fc2 = weight([fc_hidden, 10], stddev) b_fc2 = bias([10]) y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) cross_entropy = tf.reduce_mean(-tf.reduce_sum(y * tf.log(y_conv), reduction_indices=[1])) correct_pred = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y, 1)) return (tf.train.AdamOptimizer(lr).minimize(cross_entropy), tf.reduce_mean(tf.cast(correct_pred, tf.float32)), cross_entropy) # Define a remote function that takes a set of hyperparameters as well as the # data, consructs and trains a network, and returns the validation accuracy. @ray.remote def train_cnn_and_compute_accuracy(params, steps, train_images, train_labels, validation_images, validation_labels, weights=None): # Extract the hyperparameters from the params dictionary. learning_rate = params["learning_rate"] batch_size = params["batch_size"] keep = 1 - params["dropout"] stddev = params["stddev"] # Create the network and related variables. with tf.Graph().as_default(): # Create the input placeholders for the network. x = tf.placeholder(tf.float32, shape=[None, 784]) y = tf.placeholder(tf.float32, shape=[None, 10]) keep_prob = tf.placeholder(tf.float32) # Create the network. train_step, accuracy, loss = cnn_setup(x, y, keep_prob, learning_rate, stddev) # Do the training and evaluation. with tf.Session() as sess: # Use the TensorFlowVariables utility. This is only necessary if we want # to set and get the weights. variables = ray.experimental.TensorFlowVariables(loss, sess) # Initialize the network weights. sess.run(tf.global_variables_initializer()) # If some network weights were passed in, set those. if weights is not None: variables.set_weights(weights) # Do some steps of training. for i in range(1, steps + 1): # Fetch the next batch of data. image_batch = get_batch(train_images, i, batch_size) label_batch = get_batch(train_labels, i, batch_size) # Do one step of training. sess.run(train_step, feed_dict={x: image_batch, y: label_batch, keep_prob: keep}) # Training is done, so compute the validation accuracy and the current # weights and return. totalacc = accuracy.eval(feed_dict={x: validation_images, y: validation_labels, keep_prob: 1.0}) new_weights = variables.get_weights() return float(totalacc), new_weights