import os from pathlib import Path import unittest import ray import ray.rllib.algorithms.bc as bc from ray.rllib.utils.framework import try_import_tf from ray.rllib.utils.test_utils import ( check_compute_single_action, check_train_results, framework_iterator, ) tf1, tf, tfv = try_import_tf() class TestBC(unittest.TestCase): @classmethod def setUpClass(cls): ray.init() @classmethod def tearDownClass(cls): ray.shutdown() def test_bc_compilation_and_learning_from_offline_file(self): """Test whether BC can be built with all frameworks. And learns from a historic-data file (while being evaluated on an actual env using evaluation_num_workers > 0). """ rllib_dir = Path(__file__).parent.parent.parent.parent print("rllib dir={}".format(rllib_dir)) data_file = os.path.join(rllib_dir, "tests/data/cartpole/large.json") print("data_file={} exists={}".format(data_file, os.path.isfile(data_file))) config = ( bc.BCConfig() .evaluation( evaluation_interval=3, evaluation_num_workers=1, evaluation_duration=5, evaluation_parallel_to_training=True, evaluation_config={"input": "sampler"}, ) .offline_data(input_=[data_file]) ) num_iterations = 350 min_reward = 75.0 # Test for all frameworks. for _ in framework_iterator(config, frameworks=("tf", "torch")): trainer = config.build(env="CartPole-v0") learnt = False for i in range(num_iterations): results = trainer.train() check_train_results(results) print(results) eval_results = results.get("evaluation") if eval_results: print("iter={} R={}".format(i, eval_results["episode_reward_mean"])) # Learn until good reward is reached in the actual env. if eval_results["episode_reward_mean"] > min_reward: print("learnt!") learnt = True break if not learnt: raise ValueError( "`BC` did not reach {} reward from expert offline " "data!".format(min_reward) ) check_compute_single_action(trainer, include_prev_action_reward=True) trainer.stop() if __name__ == "__main__": import pytest import sys sys.exit(pytest.main(["-v", __file__]))