import unittest import ray import ray.rllib.algorithms.alpha_zero as az from ray.rllib.algorithms.alpha_zero.models.custom_torch_models import DenseModel from ray.rllib.examples.env.cartpole_sparse_rewards import CartPoleSparseRewards from ray.rllib.utils.test_utils import ( check_train_results, framework_iterator, ) class TestAlphaZero(unittest.TestCase): @classmethod def setUpClass(cls) -> None: ray.init() @classmethod def tearDownClass(cls) -> None: ray.shutdown() def test_alpha_zero_compilation(self): """Test whether AlphaZero can be built with all frameworks.""" config = ( az.AlphaZeroConfig() .environment(env=CartPoleSparseRewards) .training(model={"custom_model": DenseModel}) ) num_iterations = 1 # Only working for torch right now. for _ in framework_iterator(config, frameworks="torch"): trainer = config.build() for i in range(num_iterations): results = trainer.train() check_train_results(results) print(results) if __name__ == "__main__": import pytest import sys sys.exit(pytest.main(["-v", __file__]))