from gym.spaces import Box, Dict, Discrete, Tuple import numpy as np import unittest import ray import ray.rllib.algorithms.pg as pg from ray.rllib.evaluation.postprocessing import Postprocessing from ray.rllib.examples.env.random_env import RandomEnv from ray.rllib.models.tf.tf_action_dist import Categorical from ray.rllib.models.torch.torch_action_dist import TorchCategorical from ray.rllib.policy.sample_batch import SampleBatch from ray.rllib.utils.numpy import fc from ray.rllib.utils.test_utils import ( check, check_compute_single_action, check_train_results, framework_iterator, ) from ray import tune class TestPG(unittest.TestCase): @classmethod def setUpClass(cls) -> None: ray.init() @classmethod def tearDownClass(cls) -> None: ray.shutdown() def test_pg_compilation(self): """Test whether PG can be built with all frameworks.""" config = pg.PGConfig() # Test with filter to see whether they work w/o preprocessing. config.rollouts( num_rollout_workers=1, rollout_fragment_length=500, observation_filter="MeanStdFilter", ) num_iterations = 1 image_space = Box(-1.0, 1.0, shape=(84, 84, 3)) simple_space = Box(-1.0, 1.0, shape=(3,)) tune.register_env( "random_dict_env", lambda _: RandomEnv( { "observation_space": Dict( { "a": simple_space, "b": Discrete(2), "c": image_space, } ), "action_space": Box(-1.0, 1.0, shape=(1,)), } ), ) tune.register_env( "random_tuple_env", lambda _: RandomEnv( { "observation_space": Tuple( [simple_space, Discrete(2), image_space] ), "action_space": Box(-1.0, 1.0, shape=(1,)), } ), ) for _ in framework_iterator(config, with_eager_tracing=True): # Test for different env types (discrete w/ and w/o image, + cont). for env in [ "random_dict_env", "random_tuple_env", "MsPacmanNoFrameskip-v4", "CartPole-v0", "FrozenLake-v1", ]: print(f"env={env}") trainer = config.build(env=env) for i in range(num_iterations): results = trainer.train() check_train_results(results) print(results) check_compute_single_action(trainer, include_prev_action_reward=True) def test_pg_loss_functions(self): """Tests the PG loss function math.""" config = ( pg.PGConfig() .rollouts(num_rollout_workers=0) .training( gamma=0.99, model={ "fcnet_hiddens": [10], "fcnet_activation": "linear", }, ) ) # Fake CartPole episode of n time steps. train_batch = SampleBatch( { SampleBatch.OBS: np.array( [[0.1, 0.2, 0.3, 0.4], [0.5, 0.6, 0.7, 0.8], [0.9, 1.0, 1.1, 1.2]] ), SampleBatch.ACTIONS: np.array([0, 1, 1]), SampleBatch.REWARDS: np.array([1.0, 1.0, 1.0]), SampleBatch.DONES: np.array([False, False, True]), SampleBatch.EPS_ID: np.array([1234, 1234, 1234]), SampleBatch.AGENT_INDEX: np.array([0, 0, 0]), } ) for fw, sess in framework_iterator(config, session=True): dist_cls = Categorical if fw != "torch" else TorchCategorical trainer = config.build(env="CartPole-v0") policy = trainer.get_policy() vars = policy.model.trainable_variables() if sess: vars = policy.get_session().run(vars) # Post-process (calculate simple (non-GAE) advantages) and attach # to train_batch dict. # A = [0.99^2 * 1.0 + 0.99 * 1.0 + 1.0, 0.99 * 1.0 + 1.0, 1.0] = # [2.9701, 1.99, 1.0] train_batch_ = pg.post_process_advantages(policy, train_batch.copy()) if fw == "torch": train_batch_ = policy._lazy_tensor_dict(train_batch_) # Check Advantage values. check(train_batch_[Postprocessing.ADVANTAGES], [2.9701, 1.99, 1.0]) # Actual loss results. if sess: results = policy.get_session().run( policy._loss, feed_dict=policy._get_loss_inputs_dict(train_batch_, shuffle=False), ) else: results = policy.loss( policy.model, dist_class=dist_cls, train_batch=train_batch_ ) # Calculate expected results. if fw != "torch": expected_logits = fc( fc(train_batch_[SampleBatch.OBS], vars[0], vars[1], framework=fw), vars[2], vars[3], framework=fw, ) else: expected_logits = fc( fc(train_batch_[SampleBatch.OBS], vars[2], vars[3], framework=fw), vars[0], vars[1], framework=fw, ) expected_logp = dist_cls(expected_logits, policy.model).logp( train_batch_[SampleBatch.ACTIONS] ) adv = train_batch_[Postprocessing.ADVANTAGES] if sess: expected_logp = sess.run(expected_logp) elif fw == "torch": expected_logp = expected_logp.detach().cpu().numpy() adv = adv.detach().cpu().numpy() else: expected_logp = expected_logp.numpy() expected_loss = -np.mean(expected_logp * adv) check(results, expected_loss, decimals=4) if __name__ == "__main__": import pytest import sys sys.exit(pytest.main(["-v", __file__]))