cluster_name: ray-tune-scalability-tests-16x64_data max_workers: 16 upscaling_speed: 16 idle_timeout_minutes: 0 docker: image: anyscale/ray:nightly container_name: ray_container pull_before_run: true provider: type: aws region: us-west-2 availability_zone: us-west-2a cache_stopped_nodes: false available_node_types: cpu_64_ondemand: node_config: InstanceType: m5.16xlarge resources: {"CPU": 64} min_workers: 0 max_workers: 0 cpu_64_spot: node_config: InstanceType: m5.16xlarge InstanceMarketOptions: MarketType: spot resources: {"CPU": 64} min_workers: 15 max_workers: 15 auth: ssh_user: ubuntu head_node_type: cpu_64_ondemand worker_default_node_type: cpu_64_spot file_mounts: { "~/release-automation-tune_scalability_tests": "." } setup_commands: - ray install-nightly - pip install pytest xgboost_ray - mkdir -p ~/data || true - rm -rf ~/data/train.parquet || true - rm -rf ~/data/test.parquet || true - cp -R /tmp/ray_tmp_mount/release-automation-tune_scalability_tests ~/release-automation-tune_scalability_tests || echo "Copy failed" - python ~/release-automation-tune_scalability_tests/create_test_data.py ~/data/train.parquet --seed 1234 --num-rows 40000000 --num-cols 40 --num-partitions 128 --num-classes 2 - python ~/release-automation-tune_scalability_tests/create_test_data.py ~/data/test.parquet --seed 1234 --num-rows 10000000 --num-cols 40 --num-partitions 128 --num-classes 2