from gym.spaces import Dict from ray.rllib.models.tf.fcnet import FullyConnectedNetwork from ray.rllib.models.tf.tf_modelv2 import TFModelV2 from ray.rllib.models.torch.torch_modelv2 import TorchModelV2 from ray.rllib.models.torch.fcnet import FullyConnectedNetwork as TorchFC from ray.rllib.utils.framework import try_import_tf, try_import_torch from ray.rllib.utils.torch_utils import FLOAT_MIN tf1, tf, tfv = try_import_tf() torch, nn = try_import_torch() class ActionMaskModel(TFModelV2): """Model that handles simple discrete action masking. This assumes the outputs are logits for a single Categorical action dist. Getting this to work with a more complex output (e.g., if the action space is a tuple of several distributions) is also possible but left as an exercise to the reader. """ def __init__( self, obs_space, action_space, num_outputs, model_config, name, **kwargs ): orig_space = getattr(obs_space, "original_space", obs_space) assert ( isinstance(orig_space, Dict) and "action_mask" in orig_space.spaces and "observations" in orig_space.spaces ) super().__init__(obs_space, action_space, num_outputs, model_config, name) self.internal_model = FullyConnectedNetwork( orig_space["observations"], action_space, num_outputs, model_config, name + "_internal", ) # disable action masking --> will likely lead to invalid actions self.no_masking = model_config["custom_model_config"].get("no_masking", False) def forward(self, input_dict, state, seq_lens): # Extract the available actions tensor from the observation. action_mask = input_dict["obs"]["action_mask"] # Compute the unmasked logits. logits, _ = self.internal_model({"obs": input_dict["obs"]["observations"]}) # If action masking is disabled, directly return unmasked logits if self.no_masking: return logits, state # Convert action_mask into a [0.0 || -inf]-type mask. inf_mask = tf.maximum(tf.math.log(action_mask), tf.float32.min) masked_logits = logits + inf_mask # Return masked logits. return masked_logits, state def value_function(self): return self.internal_model.value_function() class TorchActionMaskModel(TorchModelV2, nn.Module): """PyTorch version of above ActionMaskingModel.""" def __init__( self, obs_space, action_space, num_outputs, model_config, name, **kwargs, ): orig_space = getattr(obs_space, "original_space", obs_space) assert ( isinstance(orig_space, Dict) and "action_mask" in orig_space.spaces and "observations" in orig_space.spaces ) TorchModelV2.__init__( self, obs_space, action_space, num_outputs, model_config, name, **kwargs ) nn.Module.__init__(self) self.internal_model = TorchFC( orig_space["observations"], action_space, num_outputs, model_config, name + "_internal", ) # disable action masking --> will likely lead to invalid actions self.no_masking = False if "no_masking" in model_config["custom_model_config"]: self.no_masking = model_config["custom_model_config"]["no_masking"] def forward(self, input_dict, state, seq_lens): # Extract the available actions tensor from the observation. action_mask = input_dict["obs"]["action_mask"] # Compute the unmasked logits. logits, _ = self.internal_model({"obs": input_dict["obs"]["observations"]}) # If action masking is disabled, directly return unmasked logits if self.no_masking: return logits, state # Convert action_mask into a [0.0 || -inf]-type mask. inf_mask = torch.clamp(torch.log(action_mask), min=FLOAT_MIN) masked_logits = logits + inf_mask # Return masked logits. return masked_logits, state def value_function(self): return self.internal_model.value_function()