# This workload tests running APEX from __future__ import absolute_import from __future__ import division from __future__ import print_function import ray from ray.tests.cluster_utils import Cluster from ray.tune import run_experiments num_redis_shards = 5 redis_max_memory = 10**8 object_store_memory = 10**9 num_nodes = 3 message = ("Make sure there is enough memory on this machine to run this " "workload. We divide the system memory by 2 to provide a buffer.") assert (num_nodes * object_store_memory + num_redis_shards * redis_max_memory < ray.utils.get_system_memory() / 2), message # Simulate a cluster on one machine. cluster = Cluster() for i in range(num_nodes): cluster.add_node( redis_port=6379 if i == 0 else None, num_redis_shards=num_redis_shards if i == 0 else None, num_cpus=20, num_gpus=0, resources={str(i): 2}, object_store_memory=object_store_memory, redis_max_memory=redis_max_memory) ray.init(address=cluster.address) # Run the workload. run_experiments({ "apex": { "run": "APEX", "env": "Pong-v0", "config": { "num_workers": 8, "num_gpus": 0, "buffer_size": 10000, "learning_starts": 0, "sample_batch_size": 1, "train_batch_size": 1, "min_iter_time_s": 10, "timesteps_per_iteration": 10, }, } })