import numpy as np from ray.rllib.evaluation.postprocessing import discount_cumsum from ray.rllib.models.modelv2 import ModelV2 from ray.rllib.utils.exploration.stochastic_sampling import StochasticSampling from ray.rllib.utils.framework import try_import_tf, try_import_torch tf1, tf, tfv = try_import_tf() torch, _ = try_import_torch() class LinearFeatureBaseline: def __init__(self, reg_coeff=1e-5): self._coeffs = None self._reg_coeff = reg_coeff def get_param_values(self, **tags): return self._coeffs def set_param_values(self, val, **tags): self._coeffs = val def _features(self, path): o = np.clip(path["observations"], -10, 10) ll = len(path["rewards"]) al = np.arange(ll).reshape(-1, 1) / 100.0 return np.concatenate( [o, o ** 2, al, al ** 2, al ** 3, np.ones((ll, 1))], axis=1 ) def fit(self, paths): featmat = np.concatenate([self._features(path) for path in paths]) returns = np.concatenate([path["returns"] for path in paths]) reg_coeff = self._reg_coeff for _ in range(5): self._coeffs = np.linalg.lstsq( featmat.T.dot(featmat) + reg_coeff * np.identity(featmat.shape[1]), featmat.T.dot(returns), )[0] if not np.any(np.isnan(self._coeffs)): break reg_coeff *= 10 def predict(self, path): if self._coeffs is None: return np.zeros(len(path["rewards"])) return self._features(path).dot(self._coeffs) def calculate_gae_advantages(paths, discount, gae_lambda): baseline = LinearFeatureBaseline() for idx, path in enumerate(paths): path["returns"] = discount_cumsum(path["rewards"], discount) baseline.fit(paths) all_path_baselines = [baseline.predict(path) for path in paths] for idx, path in enumerate(paths): path_baselines = np.append(all_path_baselines[idx], 0) deltas = path["rewards"] + discount * path_baselines[1:] - path_baselines[:-1] path["advantages"] = discount_cumsum(deltas, discount * gae_lambda) return paths class MBMPOExploration(StochasticSampling): """Like StochasticSampling, but only worker=0 uses Random for n timesteps.""" def __init__( self, action_space, *, framework: str, model: ModelV2, random_timesteps: int = 8000, **kwargs ): """Initializes a MBMPOExploration instance. Args: action_space (Space): The gym action space used by the environment. framework (str): One of None, "tf", "torch". model (ModelV2): The ModelV2 used by the owning Policy. random_timesteps (int): The number of timesteps for which to act completely randomly. Only after this number of timesteps, actual samples will be drawn to get exploration actions. NOTE: For MB-MPO, only worker=0 will use this setting. All other workers will not use random actions ever. """ super().__init__( action_space, model=model, framework=framework, random_timesteps=random_timesteps, **kwargs ) assert ( self.framework == "torch" ), "MBMPOExploration currently only supports torch!" # Switch off Random sampling for all non-driver workers. if self.worker_index > 0: self.random_timesteps = 0