import argparse import ray from ray import tune from ray.rllib.examples.models.trajectory_view_utilizing_models import \ FrameStackingCartPoleModel, TorchFrameStackingCartPoleModel from ray.rllib.models.catalog import ModelCatalog from ray.rllib.utils.framework import try_import_tf from ray.rllib.utils.test_utils import check_learning_achieved tf1, tf, tfv = try_import_tf() parser = argparse.ArgumentParser() parser.add_argument("--run", type=str, default="PPO") parser.add_argument( "--framework", choices=["tf2", "tf", "tfe", "torch"], default="tf") parser.add_argument("--as-test", action="store_true") parser.add_argument("--stop-iters", type=int, default=50) parser.add_argument("--stop-timesteps", type=int, default=100000) parser.add_argument("--stop-reward", type=float, default=150.0) if __name__ == "__main__": args = parser.parse_args() ray.init(num_cpus=3) ModelCatalog.register_custom_model( "frame_stack_model", FrameStackingCartPoleModel if args.framework != "torch" else TorchFrameStackingCartPoleModel) config = { "env": "CartPole-v0", "model": { "custom_model": "frame_stack_model", "custom_model_config": { "num_frames": 4, } }, "framework": args.framework, } stop = { "training_iteration": args.stop_iters, "timesteps_total": args.stop_timesteps, "episode_reward_mean": args.stop_reward, } results = tune.run(args.run, config=config, stop=stop, verbose=2) if args.as_test: check_learning_achieved(results, args.stop_reward) ray.shutdown()