""" TensorFlow policy class used for PG. """ from typing import List, Type, Union import ray from ray.rllib.agents.pg.utils import post_process_advantages from ray.rllib.evaluation.postprocessing import Postprocessing from ray.rllib.models.action_dist import ActionDistribution from ray.rllib.models.modelv2 import ModelV2 from ray.rllib.policy import Policy from ray.rllib.policy.tf_policy_template import build_tf_policy from ray.rllib.policy.sample_batch import SampleBatch from ray.rllib.utils.framework import try_import_tf from ray.rllib.utils.typing import TensorType tf1, tf, tfv = try_import_tf() def pg_tf_loss( policy: Policy, model: ModelV2, dist_class: Type[ActionDistribution], train_batch: SampleBatch) -> Union[TensorType, List[TensorType]]: """The basic policy gradients loss function. Args: policy (Policy): The Policy to calculate the loss for. model (ModelV2): The Model to calculate the loss for. dist_class (Type[ActionDistribution]: The action distr. class. train_batch (SampleBatch): The training data. Returns: Union[TensorType, List[TensorType]]: A single loss tensor or a list of loss tensors. """ # Pass the training data through our model to get distribution parameters. dist_inputs, _ = model(train_batch) # Create an action distribution object. action_dist = dist_class(dist_inputs, model) # Calculate the vanilla PG loss based on: # L = -E[ log(pi(a|s)) * A] return -tf.reduce_mean( action_dist.logp(train_batch[SampleBatch.ACTIONS]) * tf.cast( train_batch[Postprocessing.ADVANTAGES], dtype=tf.float32)) # Build a child class of `DynamicTFPolicy`, given the extra options: # - trajectory post-processing function (to calculate advantages) # - PG loss function PGTFPolicy = build_tf_policy( name="PGTFPolicy", get_default_config=lambda: ray.rllib.agents.pg.pg.DEFAULT_CONFIG, postprocess_fn=post_process_advantages, loss_fn=pg_tf_loss)