from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging from ray.rllib.agents import with_common_config from ray.rllib.agents.ppo.ppo_policy import PPOTFPolicy from ray.rllib.agents.trainer_template import build_trainer from ray.rllib.optimizers import SyncSamplesOptimizer, LocalMultiGPUOptimizer logger = logging.getLogger(__name__) # yapf: disable # __sphinx_doc_begin__ DEFAULT_CONFIG = with_common_config({ # If true, use the Generalized Advantage Estimator (GAE) # with a value function, see https://arxiv.org/pdf/1506.02438.pdf. "use_gae": True, # GAE(lambda) parameter "lambda": 1.0, # Initial coefficient for KL divergence "kl_coeff": 0.2, # Size of batches collected from each worker "sample_batch_size": 200, # Number of timesteps collected for each SGD round "train_batch_size": 4000, # Total SGD batch size across all devices for SGD "sgd_minibatch_size": 128, # Whether to shuffle sequences in the batch when training (recommended) "shuffle_sequences": True, # Number of SGD iterations in each outer loop "num_sgd_iter": 30, # Stepsize of SGD "lr": 5e-5, # Learning rate schedule "lr_schedule": None, # Share layers for value function. If you set this to True, it's important # to tune vf_loss_coeff. "vf_share_layers": False, # Coefficient of the value function loss. It's important to tune this if # you set vf_share_layers: True "vf_loss_coeff": 1.0, # Coefficient of the entropy regularizer "entropy_coeff": 0.0, # Decay schedule for the entropy regularizer "entropy_coeff_schedule": None, # PPO clip parameter "clip_param": 0.3, # Clip param for the value function. Note that this is sensitive to the # scale of the rewards. If your expected V is large, increase this. "vf_clip_param": 10.0, # If specified, clip the global norm of gradients by this amount "grad_clip": None, # Target value for KL divergence "kl_target": 0.01, # Whether to rollout "complete_episodes" or "truncate_episodes" "batch_mode": "truncate_episodes", # Which observation filter to apply to the observation "observation_filter": "NoFilter", # Uses the sync samples optimizer instead of the multi-gpu one. This does # not support minibatches. "simple_optimizer": False, }) # __sphinx_doc_end__ # yapf: enable def choose_policy_optimizer(workers, config): if config["simple_optimizer"]: return SyncSamplesOptimizer( workers, num_sgd_iter=config["num_sgd_iter"], train_batch_size=config["train_batch_size"]) return LocalMultiGPUOptimizer( workers, sgd_batch_size=config["sgd_minibatch_size"], num_sgd_iter=config["num_sgd_iter"], num_gpus=config["num_gpus"], sample_batch_size=config["sample_batch_size"], num_envs_per_worker=config["num_envs_per_worker"], train_batch_size=config["train_batch_size"], standardize_fields=["advantages"], shuffle_sequences=config["shuffle_sequences"]) def update_kl(trainer, fetches): if "kl" in fetches: # single-agent trainer.workers.local_worker().for_policy( lambda pi: pi.update_kl(fetches["kl"])) else: def update(pi, pi_id): if pi_id in fetches: pi.update_kl(fetches[pi_id]["kl"]) else: logger.debug("No data for {}, not updating kl".format(pi_id)) # multi-agent trainer.workers.local_worker().foreach_trainable_policy(update) def warn_about_bad_reward_scales(trainer, result): # Warn about bad clipping configs if trainer.config["vf_clip_param"] <= 0: rew_scale = float("inf") elif result["policy_reward_mean"]: rew_scale = 0 # punt on handling multiagent case else: rew_scale = round( abs(result["episode_reward_mean"]) / trainer.config["vf_clip_param"], 0) if rew_scale > 200: logger.warning( "The magnitude of your environment rewards are more than " "{}x the scale of `vf_clip_param`. ".format(rew_scale) + "This means that it will take more than " "{} iterations for your value ".format(rew_scale) + "function to converge. If this is not intended, consider " "increasing `vf_clip_param`.") def validate_config(config): if config["entropy_coeff"] < 0: raise DeprecationWarning("entropy_coeff must be >= 0") if config["sgd_minibatch_size"] > config["train_batch_size"]: raise ValueError( "Minibatch size {} must be <= train batch size {}.".format( config["sgd_minibatch_size"], config["train_batch_size"])) if config["batch_mode"] == "truncate_episodes" and not config["use_gae"]: raise ValueError( "Episode truncation is not supported without a value " "function. Consider setting batch_mode=complete_episodes.") if config["multiagent"]["policies"] and not config["simple_optimizer"]: logger.info( "In multi-agent mode, policies will be optimized sequentially " "by the multi-GPU optimizer. Consider setting " "simple_optimizer=True if this doesn't work for you.") if config["simple_optimizer"]: logger.warning( "Using the simple non-minibatch optimizer. This will greatly " "reduce performance, consider simple_optimizer=False.") PPOTrainer = build_trainer( name="PPO", default_config=DEFAULT_CONFIG, default_policy=PPOTFPolicy, make_policy_optimizer=choose_policy_optimizer, validate_config=validate_config, after_optimizer_step=update_kl, after_train_result=warn_about_bad_reward_scales)