import numpy as np from ray.rllib.models.tf.misc import normc_initializer from ray.rllib.models.tf.tf_modelv2 import TFModelV2 from ray.rllib.utils.framework import get_activation_fn, try_import_tf tf = try_import_tf() class FullyConnectedNetwork(TFModelV2): """Generic fully connected network implemented in ModelV2 API.""" def __init__(self, obs_space, action_space, num_outputs, model_config, name): super(FullyConnectedNetwork, self).__init__( obs_space, action_space, num_outputs, model_config, name) activation = get_activation_fn(model_config.get("fcnet_activation")) hiddens = model_config.get("fcnet_hiddens", []) no_final_linear = model_config.get("no_final_linear") vf_share_layers = model_config.get("vf_share_layers") free_log_std = model_config.get("free_log_std") # Maybe generate free-floating bias variables for the second half of # the outputs. if free_log_std: assert num_outputs % 2 == 0, ( "num_outputs must be divisible by two", num_outputs) num_outputs = num_outputs // 2 self.log_std_var = tf.Variable( [0.0] * num_outputs, dtype=tf.float32, name="log_std") self.register_variables([self.log_std_var]) # We are using obs_flat, so take the flattened shape as input. inputs = tf.keras.layers.Input( shape=(np.product(obs_space.shape), ), name="observations") last_layer = layer_out = inputs i = 1 # Create layers 0 to second-last. for size in hiddens[:-1]: last_layer = tf.keras.layers.Dense( size, name="fc_{}".format(i), activation=activation, kernel_initializer=normc_initializer(1.0))(last_layer) i += 1 # The last layer is adjusted to be of size num_outputs, but it's a # layer with activation. if no_final_linear and num_outputs: layer_out = tf.keras.layers.Dense( num_outputs, name="fc_out", activation=activation, kernel_initializer=normc_initializer(1.0))(last_layer) # Finish the layers with the provided sizes (`hiddens`), plus - # iff num_outputs > 0 - a last linear layer of size num_outputs. else: if len(hiddens) > 0: last_layer = tf.keras.layers.Dense( hiddens[-1], name="fc_{}".format(i), activation=activation, kernel_initializer=normc_initializer(1.0))(last_layer) if num_outputs: layer_out = tf.keras.layers.Dense( num_outputs, name="fc_out", activation=None, kernel_initializer=normc_initializer(0.01))(last_layer) # Adjust num_outputs to be the number of nodes in the last layer. else: self.num_outputs = ( [np.product(obs_space.shape)] + hiddens[-1:-1])[-1] # Concat the log std vars to the end of the state-dependent means. if free_log_std: def tiled_log_std(x): return tf.tile( tf.expand_dims(self.log_std_var, 0), [tf.shape(x)[0], 1]) log_std_out = tf.keras.layers.Lambda(tiled_log_std)(inputs) layer_out = tf.keras.layers.Concatenate(axis=1)( [layer_out, log_std_out]) if not vf_share_layers: # build a parallel set of hidden layers for the value net last_layer = inputs i = 1 for size in hiddens: last_layer = tf.keras.layers.Dense( size, name="fc_value_{}".format(i), activation=activation, kernel_initializer=normc_initializer(1.0))(last_layer) i += 1 value_out = tf.keras.layers.Dense( 1, name="value_out", activation=None, kernel_initializer=normc_initializer(0.01))(last_layer) self.base_model = tf.keras.Model(inputs, [layer_out, value_out]) self.register_variables(self.base_model.variables) def forward(self, input_dict, state, seq_lens): model_out, self._value_out = self.base_model(input_dict["obs_flat"]) return model_out, state def value_function(self): return tf.reshape(self._value_out, [-1])