base_image: "anyscale/ray-ml:pinned-nightly-py37-gpu" env_vars: {} debian_packages: - unzip - zip python: # These dependencies should be handled by requirements_rllib.txt and # requirements_ml_docker.txt pip_packages: [] conda_packages: [] post_build_cmds: # Create a couple of soft links so tf 2.4.3 works with cuda 11.2. # TODO(jungong): remove these once product ray-ml docker gets upgraded to use tf 2.5.0. - sudo ln -s /usr/local/cuda /usr/local/nvidia - sudo ln -s /usr/local/cuda/lib64/libcusolver.so.11 /usr/local/cuda/lib64/libcusolver.so.10 - pip install tensorflow==2.5.0 # END: TO-DO - pip uninstall -y ray || true - pip3 install -U {{ env["RAY_WHEELS"] | default("ray") }} - {{ env["RAY_WHEELS_SANITY_CHECK"] | default("echo No Ray wheels sanity check") }} # Clone the rl-experiments repo for offline-RL files. - git clone https://github.com/ray-project/rl-experiments.git - cp rl-experiments/halfcheetah-sac/2021-09-06/halfcheetah_expert_sac.zip ~/.