from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import numpy as np class Categorical(object): def __init__(self, logits): self.logits = logits def logp(self, x): return -tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.logits, labels=x) def entropy(self): a0 = self.logits - tf.reduce_max(self.logits, reduction_indices=[1], keep_dims=True) ea0 = tf.exp(a0) z0 = tf.reduce_sum(ea0, reduction_indices=[1], keep_dims=True) p0 = ea0 / z0 return tf.reduce_sum(p0 * (tf.log(z0) - a0), reduction_indices=[1]) def kl(self, other): a0 = self.logits - tf.reduce_max(self.logits, reduction_indices=[1], keep_dims=True) a1 = other.logits - tf.reduce_max(other.logits, reduction_indices=[1], keep_dims=True) ea0 = tf.exp(a0) ea1 = tf.exp(a1) z0 = tf.reduce_sum(ea0, reduction_indices=[1], keep_dims=True) z1 = tf.reduce_sum(ea1, reduction_indices=[1], keep_dims=True) p0 = ea0 / z0 return tf.reduce_sum(p0 * (a0 - tf.log(z0) - a1 + tf.log(z1)), reduction_indices=[1]) def sample(self): return tf.multinomial(self.logits, 1) class DiagGaussian(object): def __init__(self, flat): self.flat = flat mean, logstd = tf.split(1, 2, flat) self.mean = mean self.logstd = logstd self.std = tf.exp(logstd) def logp(self, x): return - 0.5 * tf.reduce_sum(tf.square((x - self.mean) / self.std), reduction_indices=[1]) \ - 0.5 * np.log(2.0 * np.pi) * tf.to_float(tf.shape(x)[1]) \ - tf.reduce_sum(self.logstd, reduction_indices=[1]) def kl(self, other): assert isinstance(other, DiagGaussian) return tf.reduce_sum(other.logstd - self.logstd + (tf.square(self.std) + tf.square(self.mean - other.mean)) / (2.0 * tf.square(other.std)) - 0.5, reduction_indices=[1]) def entropy(self): return tf.reduce_sum(self.logstd + .5 * np.log(2.0 * np.pi * np.e), reduction_indices=[1]) def sample(self): return self.mean + self.std * tf.random_normal(tf.shape(self.mean))