import argparse import numpy as np import ray from ray.rllib.algorithms.ppo import PPO from ray.rllib.examples.env.stateless_cartpole import StatelessCartPole from ray.rllib.examples.models.trajectory_view_utilizing_models import ( FrameStackingCartPoleModel, TorchFrameStackingCartPoleModel, ) from ray.rllib.models.catalog import ModelCatalog from ray.rllib.utils.framework import try_import_tf from ray.rllib.utils.test_utils import check_learning_achieved from ray import air, tune tf1, tf, tfv = try_import_tf() parser = argparse.ArgumentParser() parser.add_argument( "--run", type=str, default="PPO", help="The RLlib-registered algorithm to use." ) parser.add_argument( "--framework", choices=["tf", "tf2", "tfe", "torch"], default="tf", help="The DL framework specifier.", ) parser.add_argument( "--as-test", action="store_true", help="Whether this script should be run as a test: --stop-reward must " "be achieved within --stop-timesteps AND --stop-iters.", ) parser.add_argument( "--stop-iters", type=int, default=50, help="Number of iterations to train." ) parser.add_argument( "--stop-timesteps", type=int, default=200000, help="Number of timesteps to train." ) parser.add_argument( "--stop-reward", type=float, default=150.0, help="Reward at which we stop training." ) if __name__ == "__main__": args = parser.parse_args() ray.init(num_cpus=3) num_frames = 16 ModelCatalog.register_custom_model( "frame_stack_model", FrameStackingCartPoleModel if args.framework != "torch" else TorchFrameStackingCartPoleModel, ) config = { "env": StatelessCartPole, "model": { "vf_share_layers": True, "custom_model": "frame_stack_model", "custom_model_config": { "num_frames": num_frames, }, # To compare against a simple LSTM: # "use_lstm": True, # "lstm_use_prev_action": True, # "lstm_use_prev_reward": True, # To compare against a simple attention net: # "use_attention": True, # "attention_use_n_prev_actions": 1, # "attention_use_n_prev_rewards": 1, }, "num_sgd_iter": 5, "vf_loss_coeff": 0.0001, "framework": args.framework, } stop = { "training_iteration": args.stop_iters, "timesteps_total": args.stop_timesteps, "episode_reward_mean": args.stop_reward, } results = tune.Tuner( args.run, param_space=config, run_config=air.RunConfig( stop=stop, verbose=2, checkpoint_config=air.CheckpointConfig(checkpoint_at_end=True), ), ).fit() if args.as_test: check_learning_achieved(results, args.stop_reward) ckpt = results.get_best_result(metric="episode_reward_mean", mode="max").checkpoint algo = PPO(config) with ckpt.as_directory() as ckpt_dir: algo.restore(ckpt_dir) # Inference loop. env = StatelessCartPole() # Run manual inference loop for n episodes. for _ in range(10): episode_reward = 0.0 reward = 0.0 action = 0 done = False obs = env.reset() while not done: # Create a dummy action using the same observation n times, # as well as dummy prev-n-actions and prev-n-rewards. action, state, logits = algo.compute_single_action( input_dict={ "obs": obs, "prev_n_obs": np.stack([obs for _ in range(num_frames)]), "prev_n_actions": np.stack([0 for _ in range(num_frames)]), "prev_n_rewards": np.stack([1.0 for _ in range(num_frames)]), }, full_fetch=True, ) obs, reward, done, info = env.step(action) episode_reward += reward print(f"Episode reward={episode_reward}") ray.shutdown()