import gym from gym.spaces import Discrete import random class RepeatAfterMeEnv(gym.Env): """Env in which the observation at timestep minus n must be repeated.""" def __init__(self, config=None): config = config or {} self.observation_space = Discrete(2) self.action_space = Discrete(2) # Note: Set `repeat_delay` to 0 for simply repeating the seen # observation (no delay). self.delay = config.get("repeat_delay", 1) self.episode_len = config.get("episode_len", 100) self.history = [] def reset(self): self.history = [0] * self.delay return self._next_obs() def step(self, action): if action == self.history[-(1 + self.delay)]: reward = 1 else: reward = -1 done = len(self.history) > self.episode_len return self._next_obs(), reward, done, {} def _next_obs(self): token = random.choice([0, 1]) self.history.append(token) return token