# This file is generated by `ray project create`. # A unique identifier for the head node and workers of this cluster. cluster_name: horovod-release-tests # The minimum number of workers nodes to launch in addition to the head # node. This number should be >= 0. min_workers: 3 # The maximum number of workers nodes to launch in addition to the head # node. This takes precedence over min_workers. min_workers defaults to 0. max_workers: 3 # If a node is idle for this many minutes, it will be removed. idle_timeout_minutes: 5 # Cloud-provider specific configuration. provider: type: aws region: us-west-2 availability_zone: us-west-2a cache_stopped_nodes: False # How Ray will authenticate with newly launched nodes. auth: ssh_user: ubuntu # By default Ray creates a new private keypair, but you can also use your own. # If you do so, make sure to also set "KeyName" in the head and worker node # configurations below. # ssh_private_key: /path/to/your/key.pem available_node_types: gpu_2_32: min_workers: 3 max_workers: 3 resources: {"CPU": 32, "GPU": 2} node_config: InstanceType: g3.8xlarge ImageId: ami-0a2363a9cff180a64 BlockDeviceMappings: - DeviceName: /dev/sda1 Ebs: VolumeSize: 150 TagSpecifications: - ResourceType: "instance" Tags: - Key: anyscale-user Value: '{{env["ANYSCALE_USER"]}}' - Key: anyscale-expiration Value: '{{env["ANSYCALE_EXPIRATION"]}}' # Provider-specific config for the head node, e.g. instance type. By default # Ray will auto-configure unspecified fields such as SubnetId and KeyName. # For more documentation on available fields, see: # http://boto3.readthedocs.io/en/latest/reference/services/ec2.html#EC2.ServiceResource.create_instances head_node: InstanceType: g3.8xlarge ImageId: latest_dlami BlockDeviceMappings: - DeviceName: /dev/sda1 Ebs: VolumeSize: 150 worker_nodes: InstanceType: g3.8xlarge ImageId: latest_dlami BlockDeviceMappings: - DeviceName: /dev/sda1 Ebs: VolumeSize: 150 InstanceMarketOptions: MarketType: spot file_mounts: {} setup_commands: - pip install -U {{env["RAY_WHEEL"]}} - pip install 'ray[rllib]' - pip install torch torchvision - HOROVOD_WITH_GLOO=1 HOROVOD_WITHOUT_MPI=1 HOROVOD_WITHOUT_TENSORFLOW=1 HOROVOD_WITHOUT_MXNET=1 HOROVOD_WITH_PYTORCH=1 pip install -U git+https://github.com/horovod/horovod.git # Command to start ray on the head node. You don't need to change this. head_start_ray_commands: - ray stop - export RAY_BACKEND_LOG_LEVEL=debug - ray start --head --port=6379 --object-manager-port=8076 --autoscaling-config=~/ray_bootstrap_config.yaml # Command to start ray on worker nodes. You don't need to change this. worker_start_ray_commands: - ray stop - export RAY_BACKEND_LOG_LEVEL=debug - ray start --address=$RAY_HEAD_IP:6379 --object-manager-port=8076