import pytest import unittest import ray import ray.rllib.agents.ddpg.apex as apex_ddpg from ray.rllib.utils.test_utils import check, check_compute_single_action, \ framework_iterator class TestApexDDPG(unittest.TestCase): def setUp(self): ray.init(num_cpus=4) def tearDown(self): ray.shutdown() def test_apex_ddpg_compilation_and_per_worker_epsilon_values(self): """Test whether an APEX-DDPGTrainer can be built on all frameworks.""" config = apex_ddpg.APEX_DDPG_DEFAULT_CONFIG.copy() config["num_workers"] = 2 config["prioritized_replay"] = True config["timesteps_per_iteration"] = 100 config["min_iter_time_s"] = 1 config["learning_starts"] = 0 config["optimizer"]["num_replay_buffer_shards"] = 1 num_iterations = 1 for _ in framework_iterator(config): plain_config = config.copy() trainer = apex_ddpg.ApexDDPGTrainer( config=plain_config, env="Pendulum-v0") # Test per-worker scale distribution. infos = trainer.workers.foreach_policy( lambda p, _: p.get_exploration_state()) scale = [i["cur_scale"] for i in infos] expected = [ 0.4**(1 + (i + 1) / float(config["num_workers"] - 1) * 7) for i in range(config["num_workers"]) ] check(scale, [0.0] + expected) for _ in range(num_iterations): print(trainer.train()) check_compute_single_action(trainer) # Test again per-worker scale distribution # (should not have changed). infos = trainer.workers.foreach_policy( lambda p, _: p.get_exploration_state()) scale = [i["cur_scale"] for i in infos] check(scale, [0.0] + expected) trainer.stop() if __name__ == "__main__": import sys sys.exit(pytest.main(["-v", __file__]))