# # This file is autogenerated by pip-compile # To update, run: # # pip-compile requirements_tune.in # --find-links https://download.pytorch.org/whl/torch_stable.html absl-py==0.11.0 # via tensorboard alembic==1.4.1 # via # mlflow # optuna argon2-cffi==20.1.0 # via notebook async-generator==1.10 # via nbclient atari-py==0.2.6 # via # -c ../requirements.txt # gym attrs==20.3.0 # via # cmd2 # jsonschema # pytest autocfg==0.0.6 # via gluoncv autogluon.core==0.0.16b20210113 # via gluoncv autograd==1.3 # via autogluon.core ax-platform==0.1.19 ; python_version >= "3.7" # via -r requirements_tune.in azure-core==1.10.0 # via azure-storage-blob azure-storage-blob==12.6.0 # via mlflow backcall==0.2.0 # via ipython bayesian-optimization==1.2.0 # via # -r requirements_tune.in # nevergrad bcrypt==3.2.0 # via paramiko bleach==3.2.1 # via nbconvert bokeh==2.2.3 # via dask boto3==1.16.53 # via # -c ../requirements.txt # autogluon.core # smart-open botocore==1.19.53 # via # boto3 # s3transfer botorch==0.3.3 # via ax-platform cached-property==1.5.2 # via h5py cachetools==4.2.0 # via google-auth certifi==2020.12.5 # via # kubernetes # msrest # requests # sentry-sdk cffi==1.14.4 # via # argon2-cffi # bcrypt # cryptography # pynacl chardet==4.0.0 # via requests click==7.1.2 # via # -c ../requirements.txt # databricks-cli # distributed # flask # mlflow # sacremoses # wandb cliff==3.5.0 # via optuna cloudpickle==1.6.0 # via # dask # distributed # gym # hyperopt # mlflow # tensorflow-probability cma==3.0.3 # via nevergrad cmaes==0.7.0 # via optuna cmd2==1.4.0 # via cliff colorama==0.4.4 # via # -c ../requirements.txt # cmd2 colorlog==4.6.2 # via optuna configparser==5.0.1 # via wandb configspace==0.4.10 # via # -r requirements_tune.in # autogluon.core # hpbandster cryptography==3.3.1 # via # azure-storage-blob # paramiko cycler==0.10.0 # via matplotlib cython==0.29.0 # via # -c ../requirements.txt # autogluon.core # configspace dask[complete]==2020.12.0 # via # -c ../requirements.txt # autogluon.core # distributed databricks-cli==0.14.1 # via mlflow dataclasses==0.6 # via torch decorator==4.4.2 # via # ipython # networkx # paramz # tensorflow-probability decord==0.4.2 # via gluoncv defusedxml==0.6.0 # via nbconvert dill==0.3.3 # via autogluon.core distributed==2020.12.0 # via # autogluon.core # dask dm-tree==0.1.5 # via # -c ../requirements.txt # tensorflow-probability docker-pycreds==0.4.0 # via wandb docker==4.4.1 # via mlflow dragonfly-opt==0.1.6 # via -r requirements_tune.in entrypoints==0.3 # via # mlflow # nbconvert filelock==3.0.12 # via # -c ../requirements.txt # transformers flask==1.1.2 # via # -c ../requirements.txt # mlflow # prometheus-flask-exporter fsspec==0.8.5 # via # dask # pytorch-lightning future==0.18.2 # via # autograd # dragonfly-opt # hyperopt # pyglet # pytorch-lightning # torch gast==0.4.0 # via tensorflow-probability gitdb==4.0.5 # via gitpython gitpython==3.1.12 # via # mlflow # wandb gluoncv==0.9.1 # via -r requirements_tune.in google-auth-oauthlib==0.4.2 # via tensorboard google-auth==1.24.0 # via # google-auth-oauthlib # kubernetes # tensorboard gpy==1.9.9 # via -r requirements_tune.in gpytorch==1.3.0 # via botorch graphviz==0.8.4 # via # autogluon.core # mxnet grpcio==1.34.0 # via # -c ../requirements.txt # tensorboard gunicorn==20.0.4 # via mlflow gym[atari]==0.18.0 # via # -c ../requirements.txt # -r requirements_tune.in h5py==3.1.0 # via # -r requirements_tune.in # keras heapdict==1.0.1 # via zict hpbandster==0.7.4 # via -r requirements_tune.in hyperopt==0.2.5 # via -r requirements_tune.in idna==2.10 # via requests importlib-metadata==3.4.0 # via # cmd2 # jsonschema # markdown # pluggy # pytest # stevedore ipykernel==5.4.3 # via # ipywidgets # jupyter # jupyter-console # notebook # qtconsole ipython-genutils==0.2.0 # via # nbformat # notebook # qtconsole # traitlets ipython==7.19.0 # via # ipykernel # ipywidgets # jupyter-console ipywidgets==7.6.3 # via jupyter isodate==0.6.0 # via msrest itsdangerous==1.1.0 # via flask jedi==0.18.0 # via ipython jinja2==2.11.2 # via # ax-platform # bokeh # flask # nbconvert # notebook jmespath==0.10.0 # via # boto3 # botocore joblib==1.0.0 # via # optuna # sacremoses # scikit-learn # scikit-optimize jsonschema==3.2.0 # via # -c ../requirements.txt # nbformat jupyter-client==6.1.11 # via # ipykernel # jupyter-console # nbclient # notebook # qtconsole jupyter-console==6.2.0 # via jupyter jupyter-core==4.7.0 # via # jupyter-client # nbconvert # nbformat # notebook # qtconsole jupyter==1.0.0 # via -r requirements_tune.in jupyterlab-pygments==0.1.2 # via nbconvert jupyterlab-widgets==1.0.0 # via ipywidgets keras==2.4.3 # via -r requirements_tune.in kiwisolver==1.3.1 # via matplotlib kubernetes==12.0.1 # via # -c ../requirements.txt # -r requirements_tune.in lightgbm==3.1.1 # via -r requirements_tune.in locket==0.2.0 # via partd mako==1.1.3 # via alembic markdown==3.3.3 # via tensorboard markupsafe==1.1.1 # via # jinja2 # mako matplotlib==3.3.3 # via # -r requirements_tune.in # autogluon.core # gluoncv # zoopt mistune==0.8.4 # via nbconvert mlflow==1.13.1 # via -r requirements_tune.in more-itertools==8.6.0 # via pytest msgpack==1.0.2 # via # -c ../requirements.txt # distributed msrest==0.6.19 # via azure-storage-blob mxnet==1.7.0.post1 # via -r requirements_tune.in nbclient==0.5.1 # via nbconvert nbconvert==6.0.7 # via # jupyter # notebook nbformat==5.0.8 # via # ipywidgets # nbclient # nbconvert # notebook nest-asyncio==1.4.3 # via nbclient netifaces==0.10.9 # via hpbandster networkx==2.5 # via # -c ../requirements.txt # hyperopt nevergrad==0.4.2.post5 # via -r requirements_tune.in notebook==6.2.0 # via # jupyter # widgetsnbextension numpy==1.19.5 # via # -c ../requirements.txt # atari-py # autogluon.core # autograd # bayesian-optimization # bokeh # cma # cmaes # configspace # dask # decord # dragonfly-opt # gluoncv # gpy # gym # h5py # hpbandster # hyperopt # keras # lightgbm # matplotlib # mlflow # mxnet # nevergrad # opencv-python # optuna # pandas # paramz # patsy # pytorch-lightning # scikit-learn # scikit-optimize # scipy # statsmodels # tensorboard # tensorboardx # tensorflow-probability # torch # torchvision # transformers # xgboost # zoopt oauthlib==3.1.0 # via requests-oauthlib opencv-python==4.5.1.48 # via # gluoncv # gym optuna==2.3.0 # via -r requirements_tune.in packaging==20.8 # via # bleach # bokeh # optuna # pytest # transformers pandas==1.0.5 # via # -c ../requirements.txt # autogluon.core # ax-platform # dask # gluoncv # mlflow # statsmodels pandocfilters==1.4.3 # via nbconvert paramiko==2.7.2 # via autogluon.core paramz==0.9.5 # via gpy parso==0.8.1 # via jedi partd==1.1.0 # via dask patsy==0.5.1 # via statsmodels pbr==5.5.1 # via # cliff # stevedore pexpect==4.8.0 # via # -c ../requirements.txt # ipython pickleshare==0.7.5 # via ipython pillow==7.2.0 ; platform_system != "Windows" # via # -c ../requirements.txt # bokeh # gluoncv # gym # matplotlib # torchvision plotly==4.14.3 # via ax-platform pluggy==0.13.1 # via pytest portalocker==2.0.0 # via gluoncv prettytable==0.7.2 # via cliff prometheus-client==0.9.0 # via # -c ../requirements.txt # notebook # prometheus-flask-exporter prometheus-flask-exporter==0.18.1 # via mlflow promise==2.3 # via wandb prompt-toolkit==3.0.10 # via # ipython # jupyter-console protobuf==3.14.0 # via # -c ../requirements.txt # mlflow # tensorboard # tensorboardx # wandb psutil==5.8.0 # via # distributed # wandb ptyprocess==0.7.0 # via # pexpect # terminado py==1.10.0 # via pytest pyaml==20.4.0 # via scikit-optimize pyasn1-modules==0.2.8 # via google-auth pyasn1==0.4.8 # via # pyasn1-modules # rsa pycparser==2.20 # via cffi pyglet==1.5.0 # via gym pygments==2.7.4 # via # -c ../requirements.txt # ipython # jupyter-console # jupyterlab-pygments # nbconvert # qtconsole pynacl==1.4.0 # via paramiko pyparsing==2.4.7 # via # cliff # configspace # matplotlib # packaging pyperclip==1.8.1 # via cmd2 pyro4==4.80 # via hpbandster pyrsistent==0.17.3 # via jsonschema pytest-remotedata==0.3.2 # via -r requirements_tune.in pytest==5.4.3 # via # -c ../requirements.txt # autogluon.core # pytest-remotedata python-dateutil==2.8.1 # via # alembic # bokeh # botocore # jupyter-client # kubernetes # matplotlib # mlflow # pandas # wandb python-editor==1.0.4 # via alembic pytorch-lightning-bolts==0.2.5 # via -r requirements_tune.in pytorch-lightning==1.0.3 # via # -r requirements_tune.in # pytorch-lightning-bolts pytz==2020.5 # via pandas pyyaml==5.3.1 # via # -c ../requirements.txt # autocfg # bokeh # cliff # dask # distributed # gluoncv # keras # kubernetes # mlflow # pyaml # pytorch-lightning # wandb # yacs pyzmq==20.0.0 # via # jupyter-client # notebook # qtconsole qtconsole==5.0.1 # via jupyter qtpy==1.9.0 # via qtconsole querystring-parser==1.2.4 # via mlflow regex==2020.11.13 # via # sacremoses # transformers requests-oauthlib==1.3.0 # via # google-auth-oauthlib # kubernetes # msrest requests==2.25.1 # via # -c ../requirements.txt # autogluon.core # azure-core # databricks-cli # docker # gluoncv # kubernetes # mlflow # msrest # mxnet # requests-oauthlib # sigopt # tensorboard # transformers # wandb retrying==1.3.3 # via plotly rsa==4.7 # via google-auth s3transfer==0.3.4 # via boto3 sacremoses==0.0.43 # via transformers scikit-learn==0.22.2 # via # -c ../requirements.txt # -r requirements_tune.in # autogluon.core # ax-platform # bayesian-optimization # gpytorch # lightgbm # scikit-optimize scikit-optimize==0.8.1 # via # -r requirements_tune.in # autogluon.core scipy==1.4.1 # via # -c ../requirements.txt # autogluon.core # ax-platform # bayesian-optimization # botorch # dragonfly-opt # gluoncv # gpy # gpytorch # gym # hpbandster # hyperopt # keras # lightgbm # optuna # paramz # scikit-learn # scikit-optimize # statsmodels # xgboost send2trash==1.5.0 # via notebook sentencepiece==0.1.95 # via transformers sentry-sdk==0.19.5 # via wandb serpent==1.30.2 # via # hpbandster # pyro4 shortuuid==1.0.1 # via wandb sigopt==5.7.0 # via -r requirements_tune.in six==1.15.0 # via # absl-py # argon2-cffi # atari-py # azure-core # bcrypt # bleach # cliff # cryptography # cycler # databricks-cli # dm-tree # docker # docker-pycreds # dragonfly-opt # google-auth # gpy # grpcio # hyperopt # isodate # jsonschema # kubernetes # mlflow # paramz # patsy # plotly # promise # protobuf # pynacl # pytest-remotedata # python-dateutil # querystring-parser # retrying # sacremoses # tensorboard # tensorboardx # tensorflow-probability # wandb # websocket-client smart_open[s3]==4.0.1 # via # -c ../requirements.txt # -r requirements_tune.in smmap==3.0.4 # via gitdb sortedcontainers==2.3.0 # via distributed sqlalchemy==1.3.22 # via # alembic # mlflow # optuna sqlparse==0.4.1 # via mlflow statsmodels==0.12.1 # via hpbandster stevedore==3.3.0 # via cliff subprocess32==3.5.4 # via wandb tabulate==0.8.7 # via # -c ../requirements.txt # databricks-cli tblib==1.7.0 # via distributed tensorboard-plugin-wit==1.7.0 # via tensorboard tensorboard==2.4.0 # via pytorch-lightning tensorboardx==2.1 # via # -c ../requirements.txt # gluoncv tensorflow-probability==0.11.1 # via -r requirements_tune.in terminado==0.9.2 # via notebook testpath==0.4.4 # via nbconvert timm==0.3.2 # via -r requirements_tune.in tokenizers==0.8.1.rc2 # via transformers toolz==0.11.1 # via # dask # distributed # partd torch==1.7.0+cpu ; sys_platform != "darwin" # via # -r requirements_tune.in # botorch # gpytorch # pytorch-lightning # pytorch-lightning-bolts # timm # torchvision torchvision==0.8.1+cpu ; sys_platform != "darwin" # via # -r requirements_tune.in # timm tornado==6.1 # via # autogluon.core # bokeh # distributed # ipykernel # jupyter-client # notebook # terminado tqdm==4.56.0 # via # autogluon.core # gluoncv # hyperopt # optuna # pytorch-lightning # sacremoses # transformers traitlets==5.0.5 # via # ipykernel # ipython # ipywidgets # jupyter-client # jupyter-core # nbclient # nbconvert # nbformat # notebook # qtconsole transformers==3.1 # via -r requirements_tune.in typeguard==2.10.0 # via ax-platform typing-extensions==3.7.4.3 # via # bokeh # importlib-metadata # nevergrad # torch typing==3.7.4.3 # via configspace urllib3==1.26.2 # via # botocore # kubernetes # requests # sentry-sdk wandb==0.10.12 # via -r requirements_tune.in watchdog==1.0.2 # via wandb wcwidth==0.2.5 # via # cmd2 # prompt-toolkit # pytest webencodings==0.5.1 # via bleach websocket-client==0.57.0 # via # docker # kubernetes werkzeug==1.0.1 # via # -c ../requirements.txt # flask # tensorboard wheel==0.36.2 # via # lightgbm # tensorboard widgetsnbextension==3.5.1 # via ipywidgets xgboost==1.3.0.post0 # via -r requirements_tune.in yacs==0.1.8 # via gluoncv zict==2.0.0 # via distributed zipp==3.4.0 # via importlib-metadata zoopt==0.4.1 # via -r requirements_tune.in # The following packages are considered to be unsafe in a requirements file: # setuptools