"""Example of using a custom RNN keras model.""" import argparse import os import ray from ray import tune from ray.tune.registry import register_env from ray.rllib.examples.env.repeat_after_me_env import RepeatAfterMeEnv from ray.rllib.examples.env.repeat_initial_obs_env import RepeatInitialObsEnv from ray.rllib.examples.models.rnn_model import RNNModel, TorchRNNModel from ray.rllib.models import ModelCatalog from ray.rllib.utils.test_utils import check_learning_achieved parser = argparse.ArgumentParser() parser.add_argument("--run", type=str, default="PPO") parser.add_argument("--env", type=str, default="RepeatAfterMeEnv") parser.add_argument("--num-cpus", type=int, default=0) parser.add_argument("--as-test", action="store_true") parser.add_argument("--torch", action="store_true") parser.add_argument("--stop-reward", type=float, default=90) parser.add_argument("--stop-iters", type=int, default=100) parser.add_argument("--stop-timesteps", type=int, default=100000) if __name__ == "__main__": args = parser.parse_args() ray.init(num_cpus=args.num_cpus or None) ModelCatalog.register_custom_model( "rnn", TorchRNNModel if args.torch else RNNModel) register_env("RepeatAfterMeEnv", lambda c: RepeatAfterMeEnv(c)) register_env("RepeatInitialObsEnv", lambda _: RepeatInitialObsEnv()) config = { "env": args.env, "env_config": { "repeat_delay": 2, }, "gamma": 0.9, # Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0. "num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")), "num_workers": 0, "num_envs_per_worker": 20, "entropy_coeff": 0.001, "num_sgd_iter": 5, "vf_loss_coeff": 1e-5, "model": { "custom_model": "rnn", "max_seq_len": 20, }, "framework": "torch" if args.torch else "tf", } stop = { "training_iteration": args.stop_iters, "timesteps_total": args.stop_timesteps, "episode_reward_mean": args.stop_reward, } results = tune.run(args.run, config=config, stop=stop, verbose=1) if args.as_test: check_learning_achieved(results, args.stop_reward) ray.shutdown()