"""Example of using RLlib's debug callbacks. Here we use callbacks to track the average CartPole pole angle magnitude as a custom metric. """ from typing import Dict import argparse import numpy as np import os import ray from ray import tune from ray.rllib.agents.callbacks import DefaultCallbacks from ray.rllib.env import BaseEnv from ray.rllib.evaluation import MultiAgentEpisode, RolloutWorker from ray.rllib.policy import Policy from ray.rllib.policy.sample_batch import SampleBatch parser = argparse.ArgumentParser() parser.add_argument( "--framework", choices=["tf", "tf2", "tfe", "torch"], default="tf", help="The DL framework specifier.") parser.add_argument("--stop-iters", type=int, default=2000) class MyCallbacks(DefaultCallbacks): def on_episode_start(self, *, worker: RolloutWorker, base_env: BaseEnv, policies: Dict[str, Policy], episode: MultiAgentEpisode, env_index: int, **kwargs): # Make sure this episode has just been started (only initial obs # logged so far). assert episode.length == 0, \ "ERROR: `on_episode_start()` callback should be called right " \ "after env reset!" print("episode {} (env-idx={}) started.".format( episode.episode_id, env_index)) episode.user_data["pole_angles"] = [] episode.hist_data["pole_angles"] = [] def on_episode_step(self, *, worker: RolloutWorker, base_env: BaseEnv, episode: MultiAgentEpisode, env_index: int, **kwargs): # Make sure this episode is ongoing. assert episode.length > 0, \ "ERROR: `on_episode_step()` callback should not be called right " \ "after env reset!" pole_angle = abs(episode.last_observation_for()[2]) raw_angle = abs(episode.last_raw_obs_for()[2]) assert pole_angle == raw_angle episode.user_data["pole_angles"].append(pole_angle) def on_episode_end(self, *, worker: RolloutWorker, base_env: BaseEnv, policies: Dict[str, Policy], episode: MultiAgentEpisode, env_index: int, **kwargs): # Make sure this episode is really done. assert episode.batch_builder.policy_collectors[ "default_policy"].buffers["dones"][-1], \ "ERROR: `on_episode_end()` should only be called " \ "after episode is done!" pole_angle = np.mean(episode.user_data["pole_angles"]) print("episode {} (env-idx={}) ended with length {} and pole " "angles {}".format(episode.episode_id, env_index, episode.length, pole_angle)) episode.custom_metrics["pole_angle"] = pole_angle episode.hist_data["pole_angles"] = episode.user_data["pole_angles"] def on_sample_end(self, *, worker: RolloutWorker, samples: SampleBatch, **kwargs): print("returned sample batch of size {}".format(samples.count)) def on_train_result(self, *, trainer, result: dict, **kwargs): print("trainer.train() result: {} -> {} episodes".format( trainer, result["episodes_this_iter"])) # you can mutate the result dict to add new fields to return result["callback_ok"] = True def on_learn_on_batch(self, *, policy: Policy, train_batch: SampleBatch, result: dict, **kwargs) -> None: result["sum_actions_in_train_batch"] = np.sum(train_batch["actions"]) print("policy.learn_on_batch() result: {} -> sum actions: {}".format( policy, result["sum_actions_in_train_batch"])) def on_postprocess_trajectory( self, *, worker: RolloutWorker, episode: MultiAgentEpisode, agent_id: str, policy_id: str, policies: Dict[str, Policy], postprocessed_batch: SampleBatch, original_batches: Dict[str, SampleBatch], **kwargs): print("postprocessed {} steps".format(postprocessed_batch.count)) if "num_batches" not in episode.custom_metrics: episode.custom_metrics["num_batches"] = 0 episode.custom_metrics["num_batches"] += 1 if __name__ == "__main__": args = parser.parse_args() ray.init() trials = tune.run( "PG", stop={ "training_iteration": args.stop_iters, }, config={ "env": "CartPole-v0", "num_envs_per_worker": 2, "callbacks": MyCallbacks, "framework": args.framework, # Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0. "num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")), }).trials # Verify episode-related custom metrics are there. custom_metrics = trials[0].last_result["custom_metrics"] print(custom_metrics) assert "pole_angle_mean" in custom_metrics assert "pole_angle_min" in custom_metrics assert "pole_angle_max" in custom_metrics assert "num_batches_mean" in custom_metrics assert "callback_ok" in trials[0].last_result # Verify `on_learn_on_batch` custom metrics are there (per policy). if args.framework == "torch": info_custom_metrics = custom_metrics["default_policy"] print(info_custom_metrics) assert "sum_actions_in_train_batch" in info_custom_metrics