import unittest import ray import ray.rllib.agents.ppo as ppo from ray.rllib.utils.test_utils import check_compute_single_action, \ framework_iterator class TestAPPO(unittest.TestCase): @classmethod def setUpClass(cls): ray.init() @classmethod def tearDownClass(cls): ray.shutdown() def test_appo_compilation(self): """Test whether an APPOTrainer can be built with both frameworks.""" config = ppo.appo.DEFAULT_CONFIG.copy() config["num_workers"] = 1 num_iterations = 2 for _ in framework_iterator(config): print("w/o v-trace") _config = config.copy() _config["vtrace"] = False trainer = ppo.APPOTrainer(config=_config, env="CartPole-v0") for i in range(num_iterations): print(trainer.train()) check_compute_single_action(trainer) trainer.stop() print("w/ v-trace") _config = config.copy() _config["vtrace"] = True trainer = ppo.APPOTrainer(config=_config, env="CartPole-v0") for i in range(num_iterations): print(trainer.train()) check_compute_single_action(trainer) trainer.stop() def test_appo_two_tf_optimizers(self): config = ppo.appo.DEFAULT_CONFIG.copy() config["num_workers"] = 1 # Not explicitly setting this should cause a warning, but not fail. # config["_tf_policy_handles_more_than_one_loss"] = True config["_separate_vf_optimizer"] = True config["_lr_vf"] = 0.0002 # Make sure we have two completely separate models for policy and # value function. config["model"]["vf_share_layers"] = False num_iterations = 2 # Only supported for tf so far. for _ in framework_iterator(config, frameworks="tf"): trainer = ppo.APPOTrainer(config=config, env="CartPole-v0") for i in range(num_iterations): print(trainer.train()) check_compute_single_action(trainer) trainer.stop() if __name__ == "__main__": import pytest import sys sys.exit(pytest.main(["-v", __file__]))