Ray
===
.. raw:: html
.. image:: https://github.com/ray-project/ray/raw/master/doc/source/images/ray_header_logo.png
**Ray is a fast and simple framework for building and running distributed applications.**
Ray is packaged with the following libraries for accelerating machine learning workloads:
- `Tune`_: Scalable Hyperparameter Tuning
- `RLlib`_: Scalable Reinforcement Learning
- `RaySGD`_: Distributed Training Wrappers
Star us on `on GitHub`_. You can also get started by visiting our `Tutorials `_. For the latest wheels (nightlies), see the `installation page `__.
.. _`on GitHub`: https://github.com/ray-project/ray
.. _`RaySGD`: raysgd/raysgd.html
.. important:: Join our `community slack `_ to discuss Ray!
Quick Start
-----------
First, install Ray with: ``pip install ray``
.. code-block:: python
# Execute Python functions in parallel.
import ray
ray.init()
@ray.remote
def f(x):
return x * x
futures = [f.remote(i) for i in range(4)]
print(ray.get(futures))
To use Ray's actor model:
.. code-block:: python
import ray
ray.init()
@ray.remote
class Counter(object):
def __init__(self):
self.n = 0
def increment(self):
self.n += 1
def read(self):
return self.n
counters = [Counter.remote() for i in range(4)]
[c.increment.remote() for c in counters]
futures = [c.read.remote() for c in counters]
print(ray.get(futures))
Visit the `Walkthrough `_ page a more comprehensive overview of Ray features.
Ray programs can run on a single machine, and can also seamlessly scale to large clusters. To execute the above Ray script in the cloud, just download `this configuration file `__, and run:
``ray submit [CLUSTER.YAML] example.py --start``
Read more about `launching clusters `_.
Tune Quick Start
----------------
`Tune`_ is a library for hyperparameter tuning at any scale. With Tune, you can launch a multi-node distributed hyperparameter sweep in less than 10 lines of code. Tune supports any deep learning framework, including PyTorch, TensorFlow, and Keras.
.. note::
To run this example, you will need to install the following:
.. code-block:: bash
$ pip install ray torch torchvision filelock
This example runs a small grid search to train a CNN using PyTorch and Tune.
.. literalinclude:: ../../python/ray/tune/tests/example.py
:language: python
:start-after: __quick_start_begin__
:end-before: __quick_start_end__
If TensorBoard is installed, automatically visualize all trial results:
.. code-block:: bash
tensorboard --logdir ~/ray_results
.. _`Tune`: tune.html
RLlib Quick Start
-----------------
`RLlib`_ is an open-source library for reinforcement learning built on top of Ray that offers both high scalability and a unified API for a variety of applications.
.. code-block:: bash
pip install tensorflow # or tensorflow-gpu
pip install ray[rllib] # also recommended: ray[debug]
.. code-block:: python
import gym
from gym.spaces import Discrete, Box
from ray import tune
class SimpleCorridor(gym.Env):
def __init__(self, config):
self.end_pos = config["corridor_length"]
self.cur_pos = 0
self.action_space = Discrete(2)
self.observation_space = Box(0.0, self.end_pos, shape=(1, ))
def reset(self):
self.cur_pos = 0
return [self.cur_pos]
def step(self, action):
if action == 0 and self.cur_pos > 0:
self.cur_pos -= 1
elif action == 1:
self.cur_pos += 1
done = self.cur_pos >= self.end_pos
return [self.cur_pos], 1 if done else 0, done, {}
tune.run(
"PPO",
config={
"env": SimpleCorridor,
"num_workers": 4,
"env_config": {"corridor_length": 5}})
.. _`RLlib`: rllib.html
More Information
----------------
Here are some talks, papers, and press coverage involving Ray and its libraries. Please raise an issue if any of the below links are broken!
Blog and Press
~~~~~~~~~~~~~~
- `Modern Parallel and Distributed Python: A Quick Tutorial on Ray `_
- `Why Every Python Developer Will Love Ray `_
- `Ray: A Distributed System for AI (BAIR) `_
- `10x Faster Parallel Python Without Python Multiprocessing `_
- `Implementing A Parameter Server in 15 Lines of Python with Ray `_
- `Ray Distributed AI Framework Curriculum `_
- `RayOnSpark: Running Emerging AI Applications on Big Data Clusters with Ray and Analytics Zoo `_
- `First user tips for Ray `_
- [Tune] `Tune: a Python library for fast hyperparameter tuning at any scale `_
- [Tune] `Cutting edge hyperparameter tuning with Ray Tune `_
- [RLlib] `New Library Targets High Speed Reinforcement Learning `_
- [RLlib] `Scaling Multi Agent Reinforcement Learning `_
- [RLlib] `Functional RL with Keras and Tensorflow Eager `_
- [Modin] `How to Speed up Pandas by 4x with one line of code `_
- [Modin] `Quick Tip – Speed up Pandas using Modin `_
- `Ray Blog`_
.. _`Ray Blog`: https://ray-project.github.io/
Talks (Videos)
~~~~~~~~~~~~~~
- `Programming at any Scale with Ray | SF Python Meetup Sept 2019 `_
- `Ray for Reinforcement Learning | Data Council 2019 `_
- `Scaling Interactive Pandas Workflows with Modin `_
- `Ray: A Distributed Execution Framework for AI | SciPy 2018 `_
- `Ray: A Cluster Computing Engine for Reinforcement Learning Applications | Spark Summit `_
- `RLlib: Ray Reinforcement Learning Library | RISECamp 2018 `_
- `Enabling Composition in Distributed Reinforcement Learning | Spark Summit 2018 `_
- `Tune: Distributed Hyperparameter Search | RISECamp 2018 `_
Slides
~~~~~~
- `Talk given at UC Berkeley DS100 `_
- `Talk given in October 2019 `_
- [Tune] `Talk given at RISECamp 2019 `_
Academic Papers
~~~~~~~~~~~~~~~
- `Ray paper`_
- `Ray HotOS paper`_
- `RLlib paper`_
- `Tune paper`_
.. _`Ray paper`: https://arxiv.org/abs/1712.05889
.. _`Ray HotOS paper`: https://arxiv.org/abs/1703.03924
.. _`RLlib paper`: https://arxiv.org/abs/1712.09381
.. _`Tune paper`: https://arxiv.org/abs/1807.05118
Getting Involved
----------------
- `ray-dev@googlegroups.com`_: For discussions about development or any general
questions.
- `StackOverflow`_: For questions about how to use Ray.
- `GitHub Issues`_: For reporting bugs and feature requests.
- `Pull Requests`_: For submitting code contributions.
.. _`ray-dev@googlegroups.com`: https://groups.google.com/forum/#!forum/ray-dev
.. _`GitHub Issues`: https://github.com/ray-project/ray/issues
.. _`StackOverflow`: https://stackoverflow.com/questions/tagged/ray
.. _`Pull Requests`: https://github.com/ray-project/ray/pulls
.. toctree::
:maxdepth: -1
:caption: Installation
installation.rst
.. toctree::
:maxdepth: -1
:caption: Ray Core
walkthrough.rst
using-ray.rst
configure.rst
ray-dashboard.rst
cluster-index.rst
Tutorial and Examples
package-ref.rst
.. toctree::
:maxdepth: -1
:caption: Tune
tune.rst
Tune Guides and Tutorials
tune-usage.rst
tune-schedulers.rst
tune-searchalg.rst
tune-examples.rst
tune/api_docs/overview.rst
tune-contrib.rst
.. toctree::
:maxdepth: -1
:caption: RLlib
rllib.rst
rllib-toc.rst
rllib-training.rst
rllib-env.rst
rllib-models.rst
rllib-algorithms.rst
rllib-offline.rst
rllib-concepts.rst
rllib-examples.rst
rllib-package-ref.rst
rllib-dev.rst
.. toctree::
:maxdepth: -1
:caption: Ray SGD
raysgd/raysgd.rst
raysgd/raysgd_pytorch.rst
raysgd/raysgd_tensorflow.rst
raysgd/raysgd_ref.rst
.. toctree::
:maxdepth: -1
:caption: Other Libraries
multiprocessing.rst
joblib.rst
iter.rst
pandas_on_ray.rst
serve.rst
.. toctree::
:maxdepth: -1
:caption: Development and Internals
development.rst
profiling.rst
fault-tolerance.rst
getting-involved.rst