import numpy as np import unittest import ray import ray.rllib.agents.pg as pg from ray.rllib.evaluation.postprocessing import Postprocessing from ray.rllib.models.tf.tf_action_dist import Categorical from ray.rllib.models.torch.torch_action_dist import TorchCategorical from ray.rllib.policy.sample_batch import SampleBatch from ray.rllib.utils.numpy import fc from ray.rllib.utils.test_utils import check, check_compute_single_action, \ check_train_results, framework_iterator class TestPG(unittest.TestCase): @classmethod def setUpClass(cls) -> None: ray.init() @classmethod def tearDownClass(cls) -> None: ray.shutdown() def test_pg_compilation(self): """Test whether a PGTrainer can be built with both frameworks.""" config = pg.DEFAULT_CONFIG.copy() config["num_workers"] = 1 config["rollout_fragment_length"] = 500 num_iterations = 1 for _ in framework_iterator(config): for env in ["FrozenLake-v0", "CartPole-v0"]: trainer = pg.PGTrainer(config=config, env=env) for i in range(num_iterations): results = trainer.train() check_train_results(results) print(results) check_compute_single_action( trainer, include_prev_action_reward=True) def test_pg_loss_functions(self): """Tests the PG loss function math.""" config = pg.DEFAULT_CONFIG.copy() config["num_workers"] = 0 # Run locally. config["gamma"] = 0.99 config["model"]["fcnet_hiddens"] = [10] config["model"]["fcnet_activation"] = "linear" # Fake CartPole episode of n time steps. train_batch = SampleBatch({ SampleBatch.OBS: np.array([[0.1, 0.2, 0.3, 0.4], [0.5, 0.6, 0.7, 0.8], [0.9, 1.0, 1.1, 1.2]]), SampleBatch.ACTIONS: np.array([0, 1, 1]), SampleBatch.REWARDS: np.array([1.0, 1.0, 1.0]), SampleBatch.DONES: np.array([False, False, True]), SampleBatch.EPS_ID: np.array([1234, 1234, 1234]), SampleBatch.AGENT_INDEX: np.array([0, 0, 0]), }) for fw, sess in framework_iterator(config, session=True): dist_cls = (Categorical if fw != "torch" else TorchCategorical) trainer = pg.PGTrainer(config=config, env="CartPole-v0") policy = trainer.get_policy() vars = policy.model.trainable_variables() if sess: vars = policy.get_session().run(vars) # Post-process (calculate simple (non-GAE) advantages) and attach # to train_batch dict. # A = [0.99^2 * 1.0 + 0.99 * 1.0 + 1.0, 0.99 * 1.0 + 1.0, 1.0] = # [2.9701, 1.99, 1.0] train_batch_ = pg.post_process_advantages(policy, train_batch.copy()) if fw == "torch": train_batch_ = policy._lazy_tensor_dict(train_batch_) # Check Advantage values. check(train_batch_[Postprocessing.ADVANTAGES], [2.9701, 1.99, 1.0]) # Actual loss results. if sess: results = policy.get_session().run( policy._loss, feed_dict=policy._get_loss_inputs_dict( train_batch_, shuffle=False)) else: results = (pg.pg_tf_loss if fw in ["tf2", "tfe"] else pg.pg_torch_loss)( policy, policy.model, dist_class=dist_cls, train_batch=train_batch_) # Calculate expected results. if fw != "torch": expected_logits = fc( fc(train_batch_[SampleBatch.OBS], vars[0], vars[1], framework=fw), vars[2], vars[3], framework=fw) else: expected_logits = fc( fc(train_batch_[SampleBatch.OBS], vars[2], vars[3], framework=fw), vars[0], vars[1], framework=fw) expected_logp = dist_cls(expected_logits, policy.model).logp( train_batch_[SampleBatch.ACTIONS]) adv = train_batch_[Postprocessing.ADVANTAGES] if sess: expected_logp = sess.run(expected_logp) elif fw == "torch": expected_logp = expected_logp.detach().cpu().numpy() adv = adv.detach().cpu().numpy() else: expected_logp = expected_logp.numpy() expected_loss = -np.mean(expected_logp * adv) check(results, expected_loss, decimals=4) if __name__ == "__main__": import pytest import sys sys.exit(pytest.main(["-v", __file__]))