import os from pathlib import Path import re import sys import unittest import ray from ray import tune from ray.rllib.examples.env.multi_agent import MultiAgentCartPole from ray.rllib.utils.test_utils import framework_iterator def evaluate_test(algo, env="CartPole-v0", test_episode_rollout=False): extra_config = "" if algo == "ARS": extra_config = ',"train_batch_size": 10, "noise_size": 250000' elif algo == "ES": extra_config = ( ',"episodes_per_batch": 1,"train_batch_size": 10, ' '"noise_size": 250000' ) for fw in framework_iterator(frameworks=("tf", "torch")): fw_ = ', "framework": "{}"'.format(fw) tmp_dir = os.popen("mktemp -d").read()[:-1] if not os.path.exists(tmp_dir): sys.exit(1) print("Saving results to {}".format(tmp_dir)) rllib_dir = str(Path(__file__).parent.parent.absolute()) print("RLlib dir = {}\nexists={}".format(rllib_dir, os.path.exists(rllib_dir))) os.system( "python {}/train.py --local-dir={} --run={} " "--checkpoint-freq=1 ".format(rllib_dir, tmp_dir, algo) + "--config='{" + '"num_workers": 1, "num_gpus": 0{}{}'.format(fw_, extra_config) + ', "min_sample_timesteps_per_iteration": 5,' '"min_time_s_per_iteration": 0.1, ' '"model": {"fcnet_hiddens": [10]}' "}' --stop='{\"training_iteration\": 1}'" + " --env={}".format(env) ) checkpoint_path = os.popen( "ls {}/default/*/checkpoint_000001/checkpoint-1".format(tmp_dir) ).read()[:-1] if not os.path.exists(checkpoint_path): sys.exit(1) print("Checkpoint path {} (exists)".format(checkpoint_path)) # Test rolling out n steps. os.popen( 'python {}/evaluate.py --run={} "{}" --steps=10 ' '--out="{}/rollouts_10steps.pkl"'.format( rllib_dir, algo, checkpoint_path, tmp_dir ) ).read() if not os.path.exists(tmp_dir + "/rollouts_10steps.pkl"): sys.exit(1) print("evaluate output (10 steps) exists!") # Test rolling out 1 episode. if test_episode_rollout: os.popen( 'python {}/evaluate.py --run={} "{}" --episodes=1 ' '--out="{}/rollouts_1episode.pkl"'.format( rllib_dir, algo, checkpoint_path, tmp_dir ) ).read() if not os.path.exists(tmp_dir + "/rollouts_1episode.pkl"): sys.exit(1) print("evaluate output (1 ep) exists!") # Cleanup. os.popen('rm -rf "{}"'.format(tmp_dir)).read() def learn_test_plus_evaluate(algo, env="CartPole-v0"): for fw in framework_iterator(frameworks=("tf", "torch")): fw_ = ', \\"framework\\": \\"{}\\"'.format(fw) tmp_dir = os.popen("mktemp -d").read()[:-1] if not os.path.exists(tmp_dir): # Last resort: Resolve via underlying tempdir (and cut tmp_. tmp_dir = ray._private.utils.tempfile.gettempdir() + tmp_dir[4:] if not os.path.exists(tmp_dir): sys.exit(1) print("Saving results to {}".format(tmp_dir)) rllib_dir = str(Path(__file__).parent.parent.absolute()) print("RLlib dir = {}\nexists={}".format(rllib_dir, os.path.exists(rllib_dir))) os.system( "python {}/train.py --local-dir={} --run={} " "--checkpoint-freq=1 --checkpoint-at-end ".format(rllib_dir, tmp_dir, algo) + '--config="{\\"num_gpus\\": 0, \\"num_workers\\": 1, ' '\\"evaluation_config\\": {\\"explore\\": false}' + fw_ + '}" ' + '--stop="{\\"episode_reward_mean\\": 100.0}"' + " --env={}".format(env) ) # Find last checkpoint and use that for the rollout. checkpoint_path = os.popen( "ls {}/default/*/checkpoint_*/checkpoint-*".format(tmp_dir) ).read()[:-1] checkpoints = [ cp for cp in checkpoint_path.split("\n") if re.match(r"^.+checkpoint-\d+$", cp) ] # Sort by number and pick last (which should be the best checkpoint). last_checkpoint = sorted( checkpoints, key=lambda x: int(re.match(r".+checkpoint-(\d+)", x).group(1)) )[-1] assert re.match(r"^.+checkpoint_\d+/checkpoint-\d+$", last_checkpoint) if not os.path.exists(last_checkpoint): sys.exit(1) print("Best checkpoint={} (exists)".format(last_checkpoint)) # Test rolling out n steps. result = os.popen( "python {}/evaluate.py --run={} " "--steps=400 " '--out="{}/rollouts_n_steps.pkl" "{}"'.format( rllib_dir, algo, tmp_dir, last_checkpoint ) ).read()[:-1] if not os.path.exists(tmp_dir + "/rollouts_n_steps.pkl"): sys.exit(1) print("Rollout output exists -> Checking reward ...") episodes = result.split("\n") mean_reward = 0.0 num_episodes = 0 for ep in episodes: mo = re.match(r"Episode .+reward: ([\d\.\-]+)", ep) if mo: mean_reward += float(mo.group(1)) num_episodes += 1 mean_reward /= num_episodes print("Rollout's mean episode reward={}".format(mean_reward)) assert mean_reward >= 100.0 # Cleanup. os.popen('rm -rf "{}"'.format(tmp_dir)).read() def learn_test_multi_agent_plus_evaluate(algo): for fw in framework_iterator(frameworks=("tf", "torch")): tmp_dir = os.popen("mktemp -d").read()[:-1] if not os.path.exists(tmp_dir): # Last resort: Resolve via underlying tempdir (and cut tmp_. tmp_dir = ray._private.utils.tempfile.gettempdir() + tmp_dir[4:] if not os.path.exists(tmp_dir): sys.exit(1) print("Saving results to {}".format(tmp_dir)) rllib_dir = str(Path(__file__).parent.parent.absolute()) print("RLlib dir = {}\nexists={}".format(rllib_dir, os.path.exists(rllib_dir))) def policy_fn(agent_id, episode, **kwargs): return "pol{}".format(agent_id) config = { "num_gpus": 0, "num_workers": 1, "evaluation_config": {"explore": False}, "framework": fw, "env": MultiAgentCartPole, "multiagent": { "policies": {"pol0", "pol1"}, "policy_mapping_fn": policy_fn, }, } stop = {"episode_reward_mean": 100.0} tune.run( algo, config=config, stop=stop, checkpoint_freq=1, checkpoint_at_end=True, local_dir=tmp_dir, verbose=1, ) # Find last checkpoint and use that for the rollout. checkpoint_path = os.popen( "ls {}/PPO/*/checkpoint_*/checkpoint-*".format(tmp_dir) ).read()[:-1] checkpoint_paths = checkpoint_path.split("\n") assert len(checkpoint_paths) > 0 checkpoints = [ cp for cp in checkpoint_paths if re.match(r"^.+checkpoint-\d+$", cp) ] # Sort by number and pick last (which should be the best checkpoint). last_checkpoint = sorted( checkpoints, key=lambda x: int(re.match(r".+checkpoint-(\d+)", x).group(1)) )[-1] assert re.match(r"^.+checkpoint_\d+/checkpoint-\d+$", last_checkpoint) if not os.path.exists(last_checkpoint): sys.exit(1) print("Best checkpoint={} (exists)".format(last_checkpoint)) ray.shutdown() # Test rolling out n steps. result = os.popen( "python {}/evaluate.py --run={} " "--steps=400 " '--out="{}/rollouts_n_steps.pkl" "{}"'.format( rllib_dir, algo, tmp_dir, last_checkpoint ) ).read()[:-1] if not os.path.exists(tmp_dir + "/rollouts_n_steps.pkl"): sys.exit(1) print("Rollout output exists -> Checking reward ...") episodes = result.split("\n") mean_reward = 0.0 num_episodes = 0 for ep in episodes: mo = re.match(r"Episode .+reward: ([\d\.\-]+)", ep) if mo: mean_reward += float(mo.group(1)) num_episodes += 1 mean_reward /= num_episodes print("Rollout's mean episode reward={}".format(mean_reward)) assert mean_reward >= 100.0 # Cleanup. os.popen('rm -rf "{}"'.format(tmp_dir)).read() class TestEvaluate1(unittest.TestCase): def test_a3c(self): evaluate_test("A3C") def test_ddpg(self): evaluate_test("DDPG", env="Pendulum-v1") class TestEvaluate2(unittest.TestCase): def test_dqn(self): evaluate_test("DQN") def test_es(self): evaluate_test("ES") class TestEvaluate3(unittest.TestCase): def test_impala(self): evaluate_test("IMPALA", env="CartPole-v0") def test_ppo(self): evaluate_test("PPO", env="CartPole-v0", test_episode_rollout=True) class TestEvaluate4(unittest.TestCase): def test_sac(self): evaluate_test("SAC", env="Pendulum-v1") class TestTrainAndEvaluate(unittest.TestCase): def test_ppo_train_then_rollout(self): learn_test_plus_evaluate("PPO") def test_ppo_multi_agent_train_then_rollout(self): learn_test_multi_agent_plus_evaluate("PPO") if __name__ == "__main__": import pytest # One can specify the specific TestCase class to run. # None for all unittest.TestCase classes in this file. class_ = sys.argv[1] if len(sys.argv) > 1 else None sys.exit(pytest.main(["-v", __file__ + ("" if class_ is None else "::" + class_)]))