import unittest import ray import ray.rllib.agents.dqn as dqn from ray.rllib.utils.framework import try_import_tf, try_import_torch from ray.rllib.utils.test_utils import check_compute_single_action, \ framework_iterator tf1, tf, tfv = try_import_tf() torch, nn = try_import_torch() class TestR2D2(unittest.TestCase): @classmethod def setUpClass(cls) -> None: ray.init() @classmethod def tearDownClass(cls) -> None: ray.shutdown() def test_r2d2_compilation(self): """Test whether a R2D2Trainer can be built on all frameworks.""" config = dqn.R2D2_DEFAULT_CONFIG.copy() config["num_workers"] = 0 # Run locally. # Wrap with an LSTM and use a very simple base-model. config["model"]["use_lstm"] = True config["model"]["max_seq_len"] = 20 config["model"]["fcnet_hiddens"] = [32] config["model"]["lstm_cell_size"] = 64 config["burn_in"] = 20 config["zero_init_states"] = True config["dueling"] = False config["lr"] = 5e-4 config["exploration_config"]["epsilon_timesteps"] = 100000 num_iterations = 2 # Test building an R2D2 agent in all frameworks. for _ in framework_iterator(config): trainer = dqn.R2D2Trainer(config=config, env="CartPole-v0") for i in range(num_iterations): results = trainer.train() print(results) check_compute_single_action(trainer, include_state=True) if __name__ == "__main__": import pytest import sys sys.exit(pytest.main(["-v", __file__]))