import gym import ray from ray.rllib.agents.ppo.ppo_torch_policy import ValueNetworkMixin from ray.rllib.evaluation.postprocessing import compute_gae_for_sample_batch, \ Postprocessing from ray.rllib.policy.policy import Policy from ray.rllib.policy.policy_template import build_policy_class from ray.rllib.policy.sample_batch import SampleBatch from ray.rllib.utils.deprecation import deprecation_warning from ray.rllib.utils.framework import try_import_torch from ray.rllib.utils.torch_ops import apply_grad_clipping from ray.rllib.utils.typing import TrainerConfigDict torch, nn = try_import_torch() def add_advantages(policy, sample_batch, other_agent_batches=None, episode=None): # Stub serving backward compatibility. deprecation_warning( old="rllib.agents.a3c.a3c_torch_policy.add_advantages", new="rllib.evaluation.postprocessing.compute_gae_for_sample_batch", error=False) return compute_gae_for_sample_batch(policy, sample_batch, other_agent_batches, episode) def actor_critic_loss(policy, model, dist_class, train_batch): logits, _ = model.from_batch(train_batch) values = model.value_function() dist = dist_class(logits, model) log_probs = dist.logp(train_batch[SampleBatch.ACTIONS]) policy.entropy = dist.entropy().sum() policy.pi_err = -train_batch[Postprocessing.ADVANTAGES].dot( log_probs.reshape(-1)) policy.value_err = torch.sum( torch.pow( values.reshape(-1) - train_batch[Postprocessing.VALUE_TARGETS], 2.0)) overall_err = sum([ policy.pi_err, policy.config["vf_loss_coeff"] * policy.value_err, -policy.config["entropy_coeff"] * policy.entropy, ]) return overall_err def loss_and_entropy_stats(policy, train_batch): return { "policy_entropy": policy.entropy.item(), "policy_loss": policy.pi_err.item(), "vf_loss": policy.value_err.item(), } def model_value_predictions(policy, input_dict, state_batches, model, action_dist): return {SampleBatch.VF_PREDS: model.value_function()} def torch_optimizer(policy, config): return torch.optim.Adam(policy.model.parameters(), lr=config["lr"]) def setup_mixins(policy: Policy, obs_space: gym.spaces.Space, action_space: gym.spaces.Space, config: TrainerConfigDict) -> None: """Call all mixin classes' constructors before PPOPolicy initialization. Args: policy (Policy): The Policy object. obs_space (gym.spaces.Space): The Policy's observation space. action_space (gym.spaces.Space): The Policy's action space. config (TrainerConfigDict): The Policy's config. """ ValueNetworkMixin.__init__(policy, obs_space, action_space, config) A3CTorchPolicy = build_policy_class( name="A3CTorchPolicy", framework="torch", get_default_config=lambda: ray.rllib.agents.a3c.a3c.DEFAULT_CONFIG, loss_fn=actor_critic_loss, stats_fn=loss_and_entropy_stats, postprocess_fn=compute_gae_for_sample_batch, extra_action_out_fn=model_value_predictions, extra_grad_process_fn=apply_grad_clipping, optimizer_fn=torch_optimizer, before_loss_init=setup_mixins, mixins=[ValueNetworkMixin], )