# Counters for sampling and training steps (env- and agent steps). NUM_ENV_STEPS_SAMPLED = "num_env_steps_sampled" NUM_AGENT_STEPS_SAMPLED = "num_agent_steps_sampled" NUM_ENV_STEPS_SAMPLED_THIS_ITER = "num_env_steps_sampled_this_iter" NUM_AGENT_STEPS_SAMPLED_THIS_ITER = "num_agent_steps_sampled_this_iter" NUM_ENV_STEPS_TRAINED = "num_env_steps_trained" NUM_AGENT_STEPS_TRAINED = "num_agent_steps_trained" NUM_ENV_STEPS_TRAINED_THIS_ITER = "num_env_steps_trained_this_iter" NUM_AGENT_STEPS_TRAINED_THIS_ITER = "num_agent_steps_trained_this_iter" # Counters for keeping track of worker weight updates (synchronization # between local worker and remote workers). NUM_SYNCH_WORKER_WEIGHTS = "num_weight_broadcasts" NUM_TRAINING_STEP_CALLS_SINCE_LAST_SYNCH_WORKER_WEIGHTS = ( "num_training_step_calls_since_last_synch_worker_weights" ) # Counters to track target network updates. LAST_TARGET_UPDATE_TS = "last_target_update_ts" NUM_TARGET_UPDATES = "num_target_updates" # Performance timers (keys for Algorithm._timers). TRAINING_ITERATION_TIMER = "training_iteration" APPLY_GRADS_TIMER = "apply_grad" COMPUTE_GRADS_TIMER = "compute_grads" SYNCH_WORKER_WEIGHTS_TIMER = "synch_weights" GRAD_WAIT_TIMER = "grad_wait" SAMPLE_TIMER = "sample" LEARN_ON_BATCH_TIMER = "learn" LOAD_BATCH_TIMER = "load" TARGET_NET_UPDATE_TIMER = "target_net_update"