import argparse import os from ray.rllib.utils.test_utils import check_learning_achieved parser = argparse.ArgumentParser() parser.add_argument( "--run", type=str, default="PPO", help="The RLlib-registered algorithm to use.") parser.add_argument("--num-cpus", type=int, default=0) parser.add_argument( "--framework", choices=["tf", "tf2", "tfe", "torch"], default="tf", help="The DL framework specifier.") parser.add_argument( "--as-test", action="store_true", help="Whether this script should be run as a test: --stop-reward must " "be achieved within --stop-timesteps AND --stop-iters.") parser.add_argument( "--stop-iters", type=int, default=200, help="Number of iterations to train.") parser.add_argument( "--stop-timesteps", type=int, default=100000, help="Number of timesteps to train.") parser.add_argument( "--stop-reward", type=float, default=100.0, help="Reward at which we stop training.") if __name__ == "__main__": import ray from ray import tune args = parser.parse_args() ray.init(num_cpus=args.num_cpus or None) config = { "env": "CartPole-v0", # Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0. "num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")), "model": { "vf_share_layers": True, }, "framework": args.framework, # Run with tracing enabled for tfe/tf2. "eager_tracing": args.framework in ["tfe", "tf2"], # Parallel evaluation+training config. # Use two evaluation workers. "evaluation_num_workers": 2, # Evaluate every other training iteration (together # with every other call to Trainer.train()). "evaluation_interval": 2, # Run for 50 episodes (25 per eval worker and per # evaluation round). The longer it takes to evaluate, the more # sense it makes to use `evaluation_parallel_to_training=True`. "evaluation_num_episodes": 10, # Switch on evaluation in parallel with training. "evaluation_parallel_to_training": True, } stop = { "training_iteration": args.stop_iters, "timesteps_total": args.stop_timesteps, "episode_reward_mean": args.stop_reward, } results = tune.run(args.run, config=config, stop=stop, verbose=2) if args.as_test: check_learning_achieved(results, args.stop_reward) ray.shutdown()