"""Example of a custom gym environment and model. Run this for a demo. This example shows: - using a custom environment - using a custom model - using Tune for grid search You can visualize experiment results in ~/ray_results using TensorBoard. """ import argparse import gym from gym.spaces import Discrete, Box import numpy as np import os import random import ray from ray import tune from ray.tune import grid_search from ray.rllib.env.env_context import EnvContext from ray.rllib.models import ModelCatalog from ray.rllib.models.tf.tf_modelv2 import TFModelV2 from ray.rllib.models.tf.fcnet import FullyConnectedNetwork from ray.rllib.models.torch.torch_modelv2 import TorchModelV2 from ray.rllib.models.torch.fcnet import FullyConnectedNetwork as TorchFC from ray.rllib.utils.framework import try_import_tf, try_import_torch from ray.rllib.utils.test_utils import check_learning_achieved tf1, tf, tfv = try_import_tf() torch, nn = try_import_torch() parser = argparse.ArgumentParser() parser.add_argument( "--run", type=str, default="PPO", help="The RLlib-registered algorithm to use.") parser.add_argument( "--framework", choices=["tf", "tf2", "tfe", "torch"], default="tf", help="The DL framework specifier.") parser.add_argument( "--as-test", action="store_true", help="Whether this script should be run as a test: --stop-reward must " "be achieved within --stop-timesteps AND --stop-iters.") parser.add_argument( "--stop-iters", type=int, default=50, help="Number of iterations to train.") parser.add_argument( "--stop-timesteps", type=int, default=100000, help="Number of timesteps to train.") parser.add_argument( "--stop-reward", type=float, default=0.1, help="Reward at which we stop training.") class SimpleCorridor(gym.Env): """Example of a custom env in which you have to walk down a corridor. You can configure the length of the corridor via the env config.""" def __init__(self, config: EnvContext): self.end_pos = config["corridor_length"] self.cur_pos = 0 self.action_space = Discrete(2) self.observation_space = Box( 0.0, self.end_pos, shape=(1, ), dtype=np.float32) # Set the seed. This is only used for the final (reach goal) reward. self.seed(config.worker_index * config.num_workers) def reset(self): self.cur_pos = 0 return [self.cur_pos] def step(self, action): assert action in [0, 1], action if action == 0 and self.cur_pos > 0: self.cur_pos -= 1 elif action == 1: self.cur_pos += 1 done = self.cur_pos >= self.end_pos # Produce a random reward when we reach the goal. return [self.cur_pos], \ random.random() * 2 if done else -0.1, done, {} def seed(self, seed=None): random.seed(seed) class CustomModel(TFModelV2): """Example of a keras custom model that just delegates to an fc-net.""" def __init__(self, obs_space, action_space, num_outputs, model_config, name): super(CustomModel, self).__init__(obs_space, action_space, num_outputs, model_config, name) self.model = FullyConnectedNetwork(obs_space, action_space, num_outputs, model_config, name) def forward(self, input_dict, state, seq_lens): return self.model.forward(input_dict, state, seq_lens) def value_function(self): return self.model.value_function() class TorchCustomModel(TorchModelV2, nn.Module): """Example of a PyTorch custom model that just delegates to a fc-net.""" def __init__(self, obs_space, action_space, num_outputs, model_config, name): TorchModelV2.__init__(self, obs_space, action_space, num_outputs, model_config, name) nn.Module.__init__(self) self.torch_sub_model = TorchFC(obs_space, action_space, num_outputs, model_config, name) def forward(self, input_dict, state, seq_lens): input_dict["obs"] = input_dict["obs"].float() fc_out, _ = self.torch_sub_model(input_dict, state, seq_lens) return fc_out, [] def value_function(self): return torch.reshape(self.torch_sub_model.value_function(), [-1]) if __name__ == "__main__": args = parser.parse_args() ray.init() # Can also register the env creator function explicitly with: # register_env("corridor", lambda config: SimpleCorridor(config)) ModelCatalog.register_custom_model( "my_model", TorchCustomModel if args.framework == "torch" else CustomModel) config = { "env": SimpleCorridor, # or "corridor" if registered above "env_config": { "corridor_length": 5, }, # Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0. "num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")), "model": { "custom_model": "my_model", "vf_share_layers": True, }, "lr": grid_search([1e-2, 1e-4, 1e-6]), # try different lrs "num_workers": 1, # parallelism "framework": args.framework, } stop = { "training_iteration": args.stop_iters, "timesteps_total": args.stop_timesteps, "episode_reward_mean": args.stop_reward, } results = tune.run(args.run, config=config, stop=stop) if args.as_test: check_learning_achieved(results, args.stop_reward) ray.shutdown()